Trusted Operating System
Architecture

a > w b F

Introduction to FreeBSD/TrustedBSD
Security Event Auditing Framework
Host-based intrusion detection

Mandatory Access Control Framework

. Demonstration

* Advanced operating system which runs on
many hardware architectures

 To name a few: x86, amd64, Sparc64,
PPC, ARM

 Derived from BSD, the version of UNIX
developed at the University of Berkeley

» Set of trusted operating system extensions
to the FreeBSD operating system

« Targets Common Criteria (CC) for
Information technology security evaluation

« Sponsored by a number of organizations:

« Defense advanced research projects agency (DARPA)
» National Security Agency (NSA)
* Apple Computer

* Mandatory Access Control Framework and
modules:

 Flask/TE
 BIBA
e MLS

« Security Event auditing framework

» Extended file system ACLs (POSIX.1e
[spec. deprecated])

« www.trustedbsd.org

Disk encryption for cold storage
Capability/privilege model
Intrusion detection

more...

What We will be Covering

e Audit
* |Intrusion detection

 Mandatory Access Control (MAC)
framework

 Authorization:

« Most operating systems have two privileges:
root/admin and regular users

 Privilege Is often required to do useful things

« Compromise of the privileged account
generally results in the system being
completely untrusted

« Security event logging:

« UNIX syslog is very popular but, ultimately,
completely inadequate for security

« Syslog offers no reliabllity; in fact in many
cases syslog(3) doesn’t even return a value

« Anyone can submit syslog messages at any
facility and priority... and as any process

* Network syslog... don't even get me started
(no confidentiality, no integrity, and based on
the most spoofable protocol [UDP])

« Security event logging

« Granularity in filtering
(unless you are amazing with grep and
regular expressions ©)

» Security notification engines...
Walit, do they even exist?

« Operating systems attempt to give logs when
something “relevant” has happen

* They allow us set permissions (in most cases)

* But, generally, provide no mechanism for
notification if there is a violation of policy

* As security practitioners, we use
potentially forged data for investigations,
Intrusion detection, etc.

* We accept the fact that under resource
pressure, certain events might not be
logged

* When systems are compromised, we
assume the entire system Is un-trusted,
format, and reinstall

Security Event Auditing

» Goals (Mostly CC/CAPP driven):

« Ensure that only privileged or authorized
subject can submit audit trails

« Must be an upper bound on loss, in the event
of a power failure

e |f an auditable event can not be audited, then
It cannot happen

* Must be able to select which events get
audited

Security auditing framework produces
records

Modeled the record format after the Sun
Basic Security Module (BSM)

Allows pre-existing tools, APIs, and others
to work with the TrustedBSD auditing
system

TrustedBSD implementation adopted by
Apple Computer

Record Format (BSM)

header,129,1 ,AUE OPEN R,0,Tue Feb 21 00:12:23 2008, +
Record header 253 msec

argument 2,0, flags

path, flib/libc.so .6

attribute, 444, root,wheel , 16842437 ,11663267 ,46706288
subject,-1,root ,wheel, root,wheel ,3159,0,0,0.0.0.0

0 or more variable

return, success, b

argument tokens... trailer,129

(paths, ports, ...) header,108,1 ,AUE CLOSE,0,Tue Feb 21 00:12:23 2006, +
255 msec

argument 2 ,0x6, £d
attribute,444,root ,wheel , 16842497 ,11663267 ,46706288
subject,-1,root wheel,root,wheel ,319,0,0,0.0.0.0
return, success,(

trailer, 108

Subject token

Return token

Trailer token

Record Queuing

Audit Audit result, preselect, access()
access() permission commit to record queue, T
argument wake up worker

login uthread —l—

audit_worker
kthread
Audit preselect 1
, : : Audit Dequeue Convert *
Poseoy assinwcer® | | patmame | | auat || record || G
- quleust = argument record to BSM

Audit Queuing

User Stable
processes Kernel store

* ...alot. There are over 500 event types.

« Kernel generated events, file access,
execution, etc.

« Userspace events: manipulating password
database, escalating privilege with things like
su

* Audit events are mapped to one or more audit
classes: file read, write, administrative, etc.

* Pre-selection occurs on the class level

* Potential for audit record volume is huge

« Terabytes per hour on busy,
fully-audited systems

* Two points for record selection

* Pre-selection: before the audit
record Is created

« Post-select: reduction on an existing audit trail

Real Time Audit Feed

e Some cases:

processes (e.g., %

Audit File system,

IDS) may Want subsystem |Buffer cache
real time feeds

queue | I ‘

o AdeSt | I | ‘ Auditpli:p;a ‘TFTE

_ queue(s
pre-selection ' AN
on the fly process

* Reduce auditing
overhead

Audit Driven Host-Based IDS

Goals:

* Reduce false positives

* Ensure intrusion decisions are based on legit
data

* Ensure that the IDS is capable of seeing all
relevant events

« Enable security administrators to define
“sequences” of events which require
escalation

Host-based intrusion detection (HIDS)
based on finite state machine principles

Uses BSM audit records as an input

Uses audit pipes to tap into real audit
record feeds

Audit trail (files) supported, making it
possible to operate on Solaris and Apple
OS X

Observes host behavior and makes
decisions on events that have actually
occurred

Fundamental difference:
NIDS often has no context

Don’t know which OS/software is running

Don’t understand vulnerabilities, etc.

Finite State Machines 101

not n not_i not c not e e

7
Success

BSMtrace States in Detail

e "States” in detail

Subject _El.rTn'.'t ._ Sutiect El.,rg;ﬁt e ‘E"IE-,.rﬂ_
STATE #1 STATE #2 STATE #3
e Example sequence:
User: User: User: bind
bind bind ' Event:
Event: Event: 'send{recvm

recvmsg sendmsg sg}

Sample State Machine

sequence named.exec {

subject <auid> { bind; };

state {
event <auditevent> { AUE SOCKET; };
status success;

};

state {
event <auditevent> { AUE BIND; };
status success;

};

state {
event S$execution;

status any;

« But wait... Something seems wrong with
trusting a machine to tell you when it has
been compromised

 What if the HIDS process gets
compromised?

 How can we compartmentalize untrusted
processes?

Mandatory Access Control (MAC)
Framework

High-level Goals:

« Develop a policy-independent access control
and authorization framework for the OS

« Hook every point in the kernel that a security
decision needs to be made

* Ensure security policy components plug in as
a module to the framework

« Have the ability to label both subjects and
objects in a policy-independent fashion

Implementation Detalls

User Process

User Process

User Process

* What is the right policy?

* Other operating systems force their notion
of policy on their users

* In some environments, MLS might make
more sense then BIBA, and in others
Flask/TE (SeLinux)

 Access control checks scattered around

the kernel in (roughly) over a hundred
places

 File access, system V IPC creation, etc.

« Other entry points mostly assist in label
management: initialization, copying, and
destruction of label storage

But other security mechanisms hook in the
syscall layer and inspect there

« BAD — Most modern operating systems
support concurrency

 Race conditions can make TOCTOU issues
very serious

* TrustedBSD operates on the vnode not the
path, as an example

 What is a label?
It's something that gets associated to all

users (subjects) and objects

« Basically, what the security policy uses to
make an authorization decision

Which Objects get Labels?

* Pipes
 Sockets

* Files/vnodes

* Mbufs (packets)
* Network interfaces

« System V IPC objects

Policy Agnostic Labels

S Es

biba—Giballow

Questions?

