
Trusted Operating System

Architecture

Agenda

1. Introduction to FreeBSD/TrustedBSD

2. Security Event Auditing Framework

3. Host-based intrusion detection

4. Mandatory Access Control Framework

5. Demonstration

What is FreeBSD? (short version)

• Advanced operating system which runs on

many hardware architectures

• To name a few: x86, amd64, Sparc64,

PPC, ARM

• Derived from BSD, the version of UNIX

developed at the University of Berkeley

What is TrustedBSD?

• Set of trusted operating system extensions

to the FreeBSD operating system

• Targets Common Criteria (CC) for

information technology security evaluation

• Sponsored by a number of organizations:

• Defense advanced research projects agency (DARPA)

• National Security Agency (NSA)

• Apple Computer

TrustedBSD Projects

• Mandatory Access Control Framework and

modules:

• Flask/TE

• BIBA

• MLS

• Security Event auditing framework

• Extended file system ACLs (POSIX.1e

[spec. deprecated])

• www.trustedbsd.org

Continued…

• Disk encryption for cold storage

• Capability/privilege model

• Intrusion detection

• more…

What We will be Covering

• Audit

• Intrusion detection

• Mandatory Access Control (MAC)

framework

First, Some Problems

• Authorization:

• Most operating systems have two privileges:

root/admin and regular users

• Privilege is often required to do useful things

• Compromise of the privileged account

generally results in the system being

completely untrusted

More Problems…

• Security event logging:

• UNIX syslog is very popular but, ultimately,

completely inadequate for security

• Syslog offers no reliability; in fact in many

cases syslog(3) doesn’t even return a value

• Anyone can submit syslog messages at any

facility and priority… and as any process

• Network syslog… don’t even get me started

(no confidentiality, no integrity, and based on

the most spoofable protocol [UDP])

Continued…

• Security event logging

• Granularity in filtering

(unless you are amazing with grep and

regular expressions )

More Problems…

• Security notification engines…

Wait, do they even exist?

• Operating systems attempt to give logs when

something “relevant” has happen

• They allow us set permissions (in most cases)

• But, generally, provide no mechanism for

notification if there is a violation of policy

So, Where are We Today?

• As security practitioners, we use

potentially forged data for investigations,

intrusion detection, etc.

• We accept the fact that under resource

pressure, certain events might not be

logged

• When systems are compromised, we

assume the entire system is un-trusted,

format, and reinstall

Security Event Auditing

Security Auditing Framework

• Goals (Mostly CC/CAPP driven):

• Ensure that only privileged or authorized

subject can submit audit trails

• Must be an upper bound on loss, in the event

of a power failure

• If an auditable event can not be audited, then

it cannot happen

• Must be able to select which events get

audited

Audit Records

• Security auditing framework produces

records

• Modeled the record format after the Sun

Basic Security Module (BSM)

• Allows pre-existing tools, APIs, and others

to work with the TrustedBSD auditing

system

• TrustedBSD implementation adopted by

Apple Computer

Record Format (BSM)

Record Queuing

Audit Queuing

So, What gets Audited?

• …a lot. There are over 500 event types.

• Kernel generated events, file access,

execution, etc.

• Userspace events: manipulating password

database, escalating privilege with things like

su

• Audit events are mapped to one or more audit

classes: file read, write, administrative, etc.

• Pre-selection occurs on the class level

Record Selection

• Potential for audit record volume is huge

• Terabytes per hour on busy,

fully-audited systems

• Two points for record selection

• Pre-selection: before the audit

record is created

• Post-select: reduction on an existing audit trail

Real Time Audit Feed

• Some cases:
processes (e.g.,
IDS) may want
real time feeds

• Adjust
pre-selection
on the fly

• Reduce auditing
overhead

Audit Driven Host-Based IDS

Audit-Driven IDS

Goals:

• Reduce false positives

• Ensure intrusion decisions are based on legit

data

• Ensure that the IDS is capable of seeing all

relevant events

• Enable security administrators to define

“sequences” of events which require

escalation

BSMTRACE

• Host-based intrusion detection (HIDS)

based on finite state machine principles

• Uses BSM audit records as an input

• Uses audit pipes to tap into real audit

record feeds

• Audit trail (files) supported, making it

possible to operate on Solaris and Apple

OS X

Continued…

• Observes host behavior and makes

decisions on events that have actually

occurred

• Fundamental difference:

NIDS often has no context

• Don’t know which OS/software is running

• Don’t understand vulnerabilities, etc.

Finite State Machines 101

BSMtrace States in Detail

Sample State Machine

sequence named.exec {

subject <auid> { bind; };

state {

event <auditevent> { AUE_SOCKET; };

status success;

};

state {

event <auditevent> { AUE_BIND; };

status success;

};

state {

event $execution;

status any;

};

};

HIDS: Legacy problem

• But wait… Something seems wrong with

trusting a machine to tell you when it has

been compromised

• What if the HIDS process gets

compromised?

• How can we compartmentalize untrusted

processes?

Mandatory Access Control (MAC)

Framework

Mandatory Access Control

Framework

High-level Goals:

• Develop a policy-independent access control

and authorization framework for the OS

• Hook every point in the kernel that a security

decision needs to be made

• Ensure security policy components plug in as

a module to the framework

• Have the ability to label both subjects and

objects in a policy-independent fashion

Implementation Details

Why the Abstraction?

• What is the right policy?

• Other operating systems force their notion

of policy on their users

• In some environments, MLS might make

more sense then BIBA, and in others

Flask/TE (SeLinux)

MAC Entry Points

• Access control checks scattered around

the kernel in (roughly) over a hundred

places

• File access, system V IPC creation, etc.

• Other entry points mostly assist in label

management: initialization, copying, and

destruction of label storage

Why all the Entry Points?

But other security mechanisms hook in the

syscall layer and inspect there

• BAD – Most modern operating systems

support concurrency

• Race conditions can make TOCTOU issues

very serious

• TrustedBSD operates on the vnode not the

path, as an example

Object Labels

• What is a label?

It’s something that gets associated to all

users (subjects) and objects

• Basically, what the security policy uses to

make an authorization decision

Which Objects get Labels?

• Pipes

• Sockets

• Files/vnodes

• Mbufs (packets)

• Network interfaces

• System V IPC objects

Policy Agnostic Labels

Questions?

