
1

As MUUG took a break for the summer, its executive was busier
than ever, hammering out a constitution for the group. The ground
work for this, jokingly referred to as the Shoal Lake Accord, was
done on a rare sunny weekend in July, at the Kwiatkowski cottage.
Several revisions and numerous e-mail messages later, we now
have a working set of by-laws to present to the group. Once voted
in, this will be the first written constitution the group has ever had.

Why all the fuss and bother? First of all, it was felt that the
group’s objectives should be clearly written out, so that anyone
enquiring about the group and its purpose would be provided with a
clear and consistent answer. Secondly, as the group grows, and
starts to involve more people and more money, it is important to
have clear, impartial rules to govern the group’s activities and
finances. Finally, it is hoped that the set of by-laws we are present-
ing will result in a more flexible and workable structure for the
group’s executive, to ensure the continued successful operation of
the group.

If you are a member of the group, a draft copy of the by-laws
should have been included with your newsletter. We will table this
draft for discussion, and possible amendment, at the September
meeting, then hold a vote to adopt the by-laws at our annual
meeting, in October. In a nutshell, here is what the by-laws are all
about, and the changes to the group’s structure that they may imply.

Objectives. Essentially, this states the purpose of the group,
and is just a statement of what was assumed all along as its
objectives. As we are now an affiliate of UniForum Canada, one of
our objectives is now to cooperate with this organization as well.

Membership. The big change here is the addition of new
classes of membership, such as a (much requested) corporate
membership, and provisions for patrons and honorary memberships,
as many other groups provide. If your company or organization is
interested in corporate membership, read this section for details.

Another change is that membership fees will no longer be pro-
rated. Membership will be for one year, effective when you join.

Thus membership renewal for new members, after October 1992,
will tend to be staggered throughout the year. (Existing members
will have to renew this October, and in October of following years,
as before.) The reason for this change is to be consistent with
UniForum Canada, so that members wishing to join both will have
only one renewal date to worry about.

Board of Directors, Executive, Elections. This is perhaps the
most fundamental change to the group’s structure, but should result
in no major impact to members. This structure is intended to give
the group’s elected officers more flexibility, and adaptability in
carrying out their duties. Rather than having you vote for specific
individuals for specific executive positions, you will vote for a
number of board members. The board will then appoint the
executive from its own members. Also, the executive consists only
of the required positions.

Additional positions, such as newsletter editor and meeting
coordinator, are not defined in the by-laws, as these are better
covered as appointments to committees - these can be set up and
dissolved by the board at any time, based on demand. Such duties
are probably best handled by small committees, rather than a single
individual, in any case.

Meetings. Despite the formalism of this section, very little
will change to the group’s monthly meetings. We will perhaps do
away with the “business” portion of the meeting for most months,
unless there are any resolutions that need to be passed. The annual
meeting will be the October meeting, where elections are held.

It is hoped that these by-laws will ensure the continued smooth
functioning of the group, as it grows and evolves. The current draft
was made possible by the efforts of a small group of very dedicated
members. Now, the next step is up to you, the group members in
general. Please look over the draft of the by-laws, and be prepared
for the discussion at our next meeting. If you have any questions
about them, or require any clarifications, please feel free to contact
one of the current executive members by phone or e-mail. ✒

MUUG Lines

UNIX is a registered trademark of UNIX System Laboratories, Inc.

Manitoba UNIX User Group

THIS MONTH’S MEETING

Volume 4, Number 9 September 1992 $2.50

Meeting Location:
Our September meeting is scheduled for Tuesday,
September 8, at 7:30 PM. The meeting will be held
at the U of M, room 234B in the new Engineering
Building (near the Senate Chambers). This building
is just south of University Centre. Free parking is
available in all student lots and most staff lots after 6
PM, except in areas designated as 24 hour reserved.

Meeting Agenda:
See inside for details.

MUUG Gets a Constitution
By Gilbert Detillieux

Newsletter of the Manitoba UNIX User Group

INSIDE THIS ISSUE

Newsletter Editor’s Ramblings.....................2
President’s Corner3
Nominations & Elections3
Books: So, You Wanna Learn Unix4
Review: Emacs Text Editor7
Hands-on: Shared Memory, part 38
Announcements:

Cliff Stoll Breakfast Seminar12
Open Systems Fall Seminar7

May 12th Meeting Minutes13
Sept. 8th Meeting Agenda13

2

The Manitoba UNIX User Group meets at
7:30 PM the second Tuesday of every month,
except July and August. The newsletter is
mailed to all paid up members one week prior
to the meeting. Membership dues are $20
annually and are due at the October meeting.
Membership dues are accepted by mail and
dues for new members will be pro-rated
accordingly.

Manitoba UNIX User Group
P.O. Box 130

Saint-Boniface, Manitoba
R2H 3B4

Internet E-mail:
editor@muug.mb.ca

This newsletter is opyrighted by the Manitoba
UNIX User Group. Articles may be reprinted
without permission, for non-profit use, as long as
the article is reprinted in its entirety and both the
original author and the Manitoba UNIX User
Group are given credit.

The Manitoba UNIX User Group, the editor, and
contributors of this newsletter do not assume any
liability for any damages that may occur as a result
of information published in this newsletter.

President: Susan Zuk (W) 788-7312
Past President: Eric Carsted 1-883-2570
Vice-President: Richard Kwiatkowski 589-4857
Treasurer: Rick Horocholyn (W) 474-4533
Secretary: Roland Schneider 1-482-5173
Membership Sec.: Allan Moulding 269-8054
Mailing List: Gilles Detillieux 489-7016
Meeting Coordinator: Kathy Norman (W) 474-8311
Newsletter editor: Gilbert Detillieux 489-7016
Information: Susan Zuk (W) 788-7312

(FAX) 788-7450
(or) Gilbert Detillieux (H) 489-7016

(FAX) 269-9178

RAMBLINGS

Copyright Policy and DisclaimerThe 1991-1992 Executive

Our Address Group Information

Get out the magnifying glass, or update that eyeglass
prescription! The September newsletter is full of stuff, and
the font sizes are sometimes tiny. (It was either that, or we
kill a few more trees.) A lot has happened since the last
edition, so there’s a lot to cover.

If you’re a MUUG member, you should find a copy of
the draft by-laws enclosed with the newsletter. The cover
article will tell you what it’s all about, in case you don’t have
the time to read it all, or don’t want to get bogged down in
legalese.

Fall is also election time for the group. Although the
election procedures will be different than in the past, they’ll
still happen in October, with nominations in September.
Look for the election committee’s report, and list of nomina-
tions, later in this edition.

There are also a couple of seminars coming up (one of
them is very soon). Look for the seminar announcements for
the CIPS breakfast seminar, where Clifford Stoll will be
speaking, and the MUUG/CIPS joint seminar on Open
Systems, which will be coming up in November.

A Newsletter Chock-Full-O’ Goodies
By Gilbert Detillieux

Also in this issue, look for the article So, You Wanna
Learn About UNIX, which is reprinted with permission from
Unix/World (from the July 1992 edition, Vol. IX, No. 7). The
article reviews many introductory books on UNIX, and will
be quite useful to anyone just starting out, or still unsure of
where to look for information about the system. Thanks to
Pat Bessler for typing in the article, and thanks to Dave
Flack, editor-in-chief at UnixWorld, for giving us permission
to copy the article. I’ve found UnixWorld, in general, to be a
very useful source of information on a variety of UNIX-
related topics, and I highly recommend it.

Finally, this issue concludes the series on Using Shared
Memory, by Peter Graham. The article includes the code for
a sample application (this is where the really fine print comes
in). We will try to make the source for this (and possibly
earlier programming articles) available on-line, possibly via
anonymous FTP on the MUUG Online system, in the near
future. This will save you lots of typing, if you want to try
out the code, not to mention saving us time and paper.

Hope to see you at the September meeting. ✒

3

How We Spent Our Summer Vacation
By Susan Zuk, President

PRESIDENT’S CORNER

ELECTIONS

Hi all. I guess with writing this message comes the knowledge that
we are quickly approaching the fall season and the completion of
another MUUG year! The executive has had a very busy summer
working on a number of projects. It is unbelievable the amount of
activity we have had these last few months.

As you know, we have kicked off the use of our computer
system known as MONA (MUUG Online Network Access). At last
count there are 86 users who have the ability to access the system.
This has been a real experience and challenge for the executive.
There is the extra workload for the group to administer the system
as well as the creation of rules, regulations and fee structures which
will come into effect on October 1. I would like to especially thank
Roland Schneider, Gilles Detillieux, Gilbert Detillieux and Andrew
Chan for their continued dedication and hard work in providing the
group with such a smooth running system and with the creation of
MONA bylaws.

The MUUG executive was also busy creating the Constitution
and Bylaws for the group. Since it is such a large undertaking (and
I thought that we could whip it together in 6 hours – Hah) we met at
Richard Kwiatkowski’s cottage and held the Shoal Lake Accord.
This was a beautiful setting to lay the groundwork for the organiza-
tion. I can truly say that our meeting was a lot less stressful than
our “friends’” constitutional talks. On the final day we had
wonderful weather and a chance to take the boats on the lake to do
some exploring. A big thanks to Richard for the use of his cottage
on that July weekend and for requesting the nice weather. The
results of the weekend have been included with the newsletter. It is

good for some nice light reading!!! If you have any questions we
can discuss them during the September meeting. The Constitution
and Bylaws will be voted on at the October meeting.

MUUG’s year end is September 30. What this means is that
elections are upon us. Nominations are now taking place. Please
let the nominating committee know if you are interested in running
for a board position (or nominating someone else). The board is
elected by the members and then the board members elect the
officers of President, Vice-President, Treasurer and Secretary. The
other positions are appointed by the President from the board
representatives (or possibly from the group membership at large).
You will find a current nominations list later in the newsletter. The
nominating committee is comprised of Roland Schneider (chair-
man), Kathy Norman, and Gilbert Detillieux.

Since time does not stand still, I would also like to draw your
attention to our fall seminar. This again will be a joint seminar with
CIPS and is entitled Open Systems – Getting Past the Hype. Please
see the write-up in the newsletter for a short overview on the
seminar. More information and brochures will be forwarded to you
in September.

Just a final note before I close. It is always important for us to
receive your input. Please provide us with ideas or requests on
meeting topics and also let us know if you are available to volunteer
your time. Your comments can be sent to my attention at
<zuksue@muug.mb.ca> or please give me a call at 788-7312.
Looking forward to seeing you in September. ✒

Well, October and the MUUG Annual Meeting are fast approach-
ing. One of the most important events at the annual meeting is the
election of a new board of directors. The choice of directors is very
important, because they plan group meetings, make policies, raise
and spend group money, and generally set the direction for the
group as a whole. Almost every event, project, or initiative, from
the monthly newsletter to the fall symposium originates with the
board of directors. All this can be a lot of work, so it’s important to
elect people with the energy, enthusiasm, and commitment to do a
good job.

You may have noticed that what we once called the “execu-
tive” is now the “board.” This is in keeping with the new constitu-
tion, which will be submitted to a vote at the annual meeting. The
only significant difference between the old and the new way of
electing the board is that people are no longer voted into specific
positions, they are just elected to the board. The board then divides
up the positions of president, vice president, secretary, treasurer,
newsletter editor, membership secretary, publicity director, and
meeting coordinator. This gives the board the flexibility to reassign
duties if someone can’t continue to do their job part way through
the year.

The other change from last year is that we now have an
election committee. The election committee does two things: 1) it
nominates people for election to the board; and 2) it runs the
election and counts the ballots. The list of people nominated by the
committee is just a starting point – any voting member of the group
can be nominated simply by getting the support of one other
member. If you feel you would like to contribute to the group by
running for a board position, please don’t hesitate to do so. Below is

the current list of nominees, followed by instructions on nominating
others.

Gilbert Detillieux Programmer/Analyst Comp. Sci., UofM
Gilles Detillieux Programmer/Analyst Physiology, UofM
Barry Finch Systems Engineering Rep. IBM
Paul Hope Coordinator of A/V St-Boniface

and Info. Services Research Centre
Rick Horocholyn Sr. Financial Consultant Manitoba Hydro
Richard Kwaitkowski Analyst RK Computer Serv.
Kirk Marat NMR Supervisor Chemistry, UofM
Roland Schneider Graduate student Elect. Engin., UofM
Rick Thorarinson Sr. Customer Support Rep. Unisys
Susan Zuk Sr. Systems Support Rep. Unisys

A total of eight people will be elected. If you want to be
nominated, or nominate someone else, send a letter to the group’s
mail-box or deliver it in person to a member of the election
committee. The letter must contain the name, title, and employer of
the nominee, along with a short (100 word) biography, and must
contain the signatures of the nominee and one other member. The
letter must be received no later than September 29, 1992. This is 14
days prior to the annual meeting. If you have any questions about
the election, please give me, Roland Schneider, a call at 1-482-5173
any time. ✒

MUUG election committee:
Roland Schneider, chairman
Kathy Norman
Gilbert Detillieux

4

So, You Wanna Learn About UNIX
Because UNIX and easy-to-learn aren’t two phrases you normally put together,

we compiled a list of books to get you started
By Walter Zintz

Reprinted by permission of UnixWorld Magazine, Copyright 1992, McGraw-Hill, Inc.

Bringing novices up to speed on the UNIX operating system
can be a rather daunting task. When UNIX’s command line
prompt pops up on a terminal screen, the question “Where do
I go from here?” pops up in the mind of a befuddled new
user. With a software system as powerful as UNIX, It’s
understandable the beginners might be hard-pressed to
quickly master its complexities when armed with only a set
of inadequate manuals or poorly organized books.

Although friendlier interfaces are available for most of
today’s newer systems, they aren’t of much help when it’s
necessary to fix a system problem or do work beyond the
ordinary. There are also a significant number of existing
UNIX systems without graphical interfaces that require
knowledge of such arcane utilities as the vi editor, awk, and
grep in order to do the job. If you don’t find the UNIX
manuals very helpful, there are some well-done how-to
books that can help fill the gaps.

There are almost 100 books in print the introduce users
to the UNIX system. The majority are for users who have no
experience with other computing systems, and hope that they
can learn the basics of computing while learning the basics
of UNIX. Most of these books are aimed at people who just
want to learn to use UNIX for their own work, although there
are some good starter books for system administrators and
programmers. This article will introduce you to what I regard
as the eight best choices for learning both computing and the
UNIX system from scratch.

This collection covers UNIX versions from the early,
but still much used, Version 7 to the latest System V Release
4 (SVR4), as well as popular variants such as The Santa Cruz
Operation’s XENIX and UNIX. These books are written for
readers ranging from enthusiastic technical types to people
whose secret wish is that computers would just go away.

I won’t pretend that non-networked systems and
character-based terminal screens are the are the future of
computing – UNIX systems today feature tight-linked
distributed computing and bit-mapped, mouse-controlled,
windowed screens. No introductory UNIX book in print
today covers such systems, however. For now, beginners on
those advanced systems will just have to switch back and
forth between any of the following UNIX books and the
available network or GUI information sources.

Introducing the UNIX System
By Henry McGilton and Rachel Morgan

For those who will use a UNIX system primarily for its text
processing utilities, this is one of the two introductory books
– the other being UNIX for People – worth your time, and
should also be considered if you want to become a proficient
user without becoming a nerd. Although this book is based
on the older Version 7 of UNIX, introductory UNIX books
just don’t come any better.

The fact that this book starts from scratch and gives

coherent explanations makes it a good choice for even the
true beginner. It manages to go beyond the basics to provide
extensive coverage of text editing and text formatting, as
well as a good start on system administration and UNIX as a
programming environment. There’s even a solid introduction
to shell scripts.

Despite the amount of ground covered, there is never
any feeling of being rushed. The authors have the knack of
taking just a few words to say something clearly enough that
it does not need to be repeated. The book has a lot of
information on the ubiquitous vi editor and its alter ego, ex,
as well as the ed and sed editors. Even with this ambitious
list, the authors manage to go into enough detail that readers
can become quite expert at online editing. The same holds
true for coverage of nroff, a cryptic non-WYSIWYG text
formatter, the ms macro package for taming nroff, and the
tbl preprocessor for creating tables.

There are no nasty surprises when you start to get down
to work, either. The authors almost never forget to mention
the exceptions to the rules that would otherwise appear to
haunt you in real-life use. And while no how-to book is
completely free of technical mistakes, this one comes
amazingly close – better than any other introductory book
I’ve encountered.

There is one detracting factor: this book is specific to
UNIX Version 7, with an extra chapter on some of the
Berkeley UNIX extensions. Version 7 is the direct anteced-
ent of almost all UNIX versions presently available, but the
systems that use Version 7 or a clone today usually call it
something else. Current descendants have new or extended
utilities that aren’t covered, but the book is still hard to top
for learning the basics of UNIX before getting into specific
versions.

Don’t confuse this book with Introducing UNIX System
V by the same authors: the books appear similar, but are
quite different inside.

The UNIX Operating System
Second Edition

By Kaare Christian
This book is my choice for software developers who are
brand new to UNIX, but knowledgeable about computing in
general. This group of users will like the book’s slant
toward UNIX as a programming environment, and the
explanations of why various aspects of UNIX are the way
they are.

Shell programming and editing in vi are the techniques
most thoroughly discussed. As for discussion of UNIX
internals, it’s mostly about the file system, the Bourne shell,
and the kernel. There are also chapters on benchmarking –
complete with a benchmark shell script – and the relation-
ships between UNIX, PCs, and DOS.

Beyond that, the book focuses on explaining approxi-

BOOKS

5

mately 100 utilities. But this book is a supplement, not a
substitute, for the manuals – it most often restricts itself to
peripheral advice on the best way to use a particular utility,
and comments on how and why the utility became what it is.

For an ambitious non-UNIX programmer, this book
should be ample preparation for The UNIX Programming
Environment by Kernighan and Pike. The ordinary program-
mer needn’t go that far: this book explains as much about
UNIX for programmers as necessary.

UNIX for People
By Peter M. Birns, Patrick B. Brown, and John C. C. Muster
This is the book that will rescue people who don’t get along
well with computers – it’s written for people whose field of
expertise is something other than computing. The book’s
pace is not too fast, no experience in computing is assumed,
and the tone is mellow and understanding throughout.
Explanations are explicit and thorough, and frequent
reminders reinforce what’s already been covered.

This book’s greatest strength is in its skillful presenta-
tion of information. In the course of their varied careers, the
three authors got as far as Ph.D. candidacies in education
and/or psychology, and they use what they’ve learned to
make a dry, technical subject easier to learn.

On top of that, this is one of the two books I enthusiasti-
cally recommend to people who want to specialize in the
text-processing end of UNIX use. In this area, the book
improves on McGilton and Morgan’s book in certain ways,
such as dropping coverage of the obsolete ed editor in favor
of the important troff text formatter. As for general UNIX
use, it covers most people’s needs.

This book’s 29 chapters – enhanced with various
learning aids, and supplemented by features such as
“roadmaps” that demystify certain command transitions –
make up a good basic education in UNIX. Readers who want
to go farther – without giving up the embedded learning
techniques – can contact the authors about the set of follow-
on modules they’ve self-published.

A Practical Guide to UNIX System V
Second Edition

By Mark G. Sobell
One of the strong points of this book is that Sobell is not a
UNIX cheerleader – he admits the system has problems as
well as benefits. Nonetheless, he had written a fine book for
fairly technical readers who want both a text and a reference
manual.

Sobell has made significant improvements since the first
edition by bringing in topic experts to critique and some-
times rewrite chapters. The result is a well-rounded book.

First and foremost comes a text section that occupies
almost two-thirds of the book, and moves the reader pretty
far along on everything of importance to users, as well as
introduces the programming environment and system
administration. Then, distinguished by black page-edge
indexing, comes one of Sobell’s specialities: reference pages
for a large number of commands and utilities, complete with
examples. Don’t confuse these with the official, cryptic man
pages provided in UNIX documentation – these lucid pages
are more like what the man pages should have been.

The book’s technical level is rather broad. Thoughtful

beginners should have little trouble with the explanations,
especially if they pay attention to each chapter’s introduc-
tion, summary, and exercises. Likewise, people with consid-
erable computing experience on other systems should not
find this book slow or pablum.

Peter Norton’s Guide to UNIX
By Peter Norton and Harley Hahn

This book is aimed at complete beginners, especially those
who are serious about learning both computing and UNIX
well. The authors make it clear from the start that using
UNIX should be fun. They’re right, of course, and none of
the other introductory technical UNIX books I’ve seen
encourages this fact.

The writing style is slow, engaging, and helpful. By the
time they reach the end of the book, readers will be at the
upper apprentice level and well-grounded in the basics. The
explanations of the ASCII code are by for the most lucid and
complete I’ve encountered in any beginner’s book on UNIX.
Sidelights on UNIX history and philosophy are sprinkled
throughout, which serves as another tool to keep the book
from seeming dry.

The book includes frequent comparisons to DOS, which
makes it a good candidate for those who are moving to
UNIX from DOS. My only reservation is that the number of
technical errors is a little higher than usual among the books
on this list.

Using UNIX
By David W. Solomon, Tanya Rodrigue,

Mark Schulman, Rosemary Colonna,
Dennis Fairclough, and David H. Lender

This is a good choice if your company is only willing to
buy one book on UNIX SVR4 for everyone in the company
below the level of UNIX guru. It starts out talking to readers
who don’t know exactly what a computer is, and is filled
with clear explanations, screen dumps, and other illustra-
tions.

The book never bogs down at the simplest level: well
before the midpoint, the concept of file block sizes as they
relate to space wastage and file fragmentation is introduced.
The book provides frequent comparisons to DOS, but you
need not know that system to follow this book easily.

A reader choosing an introductory book for personal use
might also select this book. After the first few chapters,
sections can be taken individually, which allows you to dip
into it as needed.

UNIX System V Release 4: An Introduction
By Kenneth H. Rosen, Richard R. Rosinski,

and James M. Farber
This volume’s huge 1,228-page count is devoted to explain-
ing just about everything about SVR4 except the guru stuff.
After covering the usual beginner topics in great detail, it
goes on to specialized matters like security, network admin-
istration, and running UNIX along with DOS. The result is a
book with a lot to say to every serious reader, from the
complete computer neophyte to the fairly advanced interme-
diate.

The writing is reasonably clear, although it is a little dry,
and written at the right level for determined beginners or
ordinary intermediate users. The page allows plenty of room

BOOKS

6

for extended explanations, sidelights, comparisons to DOS,
and reference material. My primary reservation is that the
frequency of technical errors is high. It’s not any worse than
the average introductory UNIX books, but is noticeably
below the standard set by the rest of the books in my top
eight.

Using SCO UNIX
By Geoffrey T. LeBlond, William B. LeBlond,
Sheila R. Blust, Wes Modes, and Ross Oliver

This is the book I recommend to people involved with
XENIX and UNIX from The Santa Cruz Operation. It’s a
very good book on UNIX with a lot of SCO-specific
information as a bonus.

This is the only book in my top eight that offers help
with installing the system software on a new computer.
Another pleasant surprise is the inclusion of chapters on
constructing filters, understanding SCO business software,
dealing with uucp, and running DOS under UNIX.

The technical range is medium, and the writing accessi-

BOOKS
ble to fairly astute beginners. After reading the entire book,
the reader will be well into intermediate user status. Skim-
ming is pretty safe because the authors use icons in the
margin to draw attention to points that shouldn’t be glossed
over.

Those who like its style, but have other variants of
System V, should turn to Using UNIX System V Release 3,
which is also published by Osborne/McGraw-Hill and has
essentially the same structure.

Other Resources
Although there are seminars and video courses galore
available, some of which are quite good, they are unneces-
sary when books like these are available. A judicious
selection from among these books should get any beginner
off to a great start. ✒

Editor-at-Large Walter Zintz writes UNIXWORLD’s
“Library” column and is the Advisor Emeritus to Uni-Ops
Books in Boonville, Calif.

Books That Get You Started

abundance of contact information is provided along with realistic
evaluations of what’s mentioned. There’s a chapter on how UNIX
is faring in the larger world of general computing that features the
cons as well as the pros of the UNIX system, and another that
fearlessly predicts future directions. Technical aspects of UNIX are
overviewed in three chapters.

Best of all, it’s a no-pain, no-strain read. The writing style is
breezy and buoyant. Even if I weren’t involved with UNIX, I could
see myself reading this as an evening’s diversion – it’s more
gripping than the average paperback novel. I doubt I’ll ever see this
book’s equal as an entre into a computer user community. – W. Z.

Living the UNIX Life
While you’re using one of the books discussed in this article to
learn the technical side of UNIX, don’t neglect the broader aspects
of the system.

Over the decades, a tradition, community, and style have
developed around UNIX. The most pleasant way to introduce
yourself to all this is to pick up a copy of Life with UNIX: A Guide
for Everyone by Don Libes and Sandy Ressler, published by
Prentice Hall.

Their book provides plenty of history, mixed with tidbits of
gossip, as well as guidance toward printed information, industry
events, the Internet, services, and application packages. An

Introducing the UNIX System
McGraw-Hill
800-262-4729
556 pages
Coverage*: Version 7, Bourne, vi/ex, nroff

The UNIX Operating System
second edition
Wiley
212-850-6000
455 pages
Coverage: System V/BSD, Bourne, vi, none

UNIX for People
Prentice Hall
201-767-5937
528 pages
Coverage: BSD, C, vi, nroff/troff

A Practical Guide to UNIX System V
second edition
Benjamin/Cummings
800-447-2226 or 617-944-3700
700 pages
Coverage: SVR4, all shells, vi, nroff

Peter Norton’s Guide to UNIX
Bantam
212-765-6500
560 pages
Coverage: Any version, Bourne/C, vi, none

Using UNIX
Que
317-573-2500
693 pages
Coverage: SVR3.2, Bourne, ed, none

UNIX System V Release 4: An Introduction
Osborne/McGraw-Hill
510-548-2805
1,228 pages
Coverage: SVR4, Bourne, ed/vi, troff

Using SCO UNIX
Osborne/McGraw-Hill
510-548-2805
610 pages
Coverage: SCO, Bourne/C, vi, nroff

*Coverage notes the specific versions of operating system, shell, editor, and text formatter that are primarily covered by each
of these books.

7

REVIEW

The emacs editor, in various incarnations, has been around
for a long time. I’m going to talk about the freely available
GNU emacs. GNU emacs can best be described as a “power
user’s” editor – it isn’t particularly easy to learn, but it is
very efficient to use after a little practice. Emacs is interest-
ing in that the program itself is mostly an interpreter for a
dialect of LISP, in which most of the actual editing functions
are written. Anyone can add their own LISP code – hence the
“extensible” part of the title. Emacs is self-documenting
because all the documentation is available on-line from
within the editor.

Because GNU emacs is so big and takes a while to start
up, it is usually left running, either in a window if you’re
using a window system or stopped in the background with a
Ctrl-Z (if your version of UNIX supports job control).
Emacs can handle many files simultaneously, allowing you
to cut and paste from one to another. You can split your
screen into several windows, either for multiple views of a
single file, or views of multiple files, or any combination you
choose. Of course, this is most useful if you have a large
number of lines on your screen to begin with. (I use a 50 line
X-window)

Unlike vi, emacs has no command mode – commands
are triggered by a series of one or more keystrokes, starting
with a control character. You can bind any command to any
sequence of keystrokes you like, including the function keys.
Commands not bound to any key can be executed by typing
Meta-X, followed by the command's name and arguments.
Common commands, like “kill-line”, are bound to single
keys, like “Ctrl-K”, while less-used operations, like “find-
file-other-window”, which opens a file in another editing
window, are bound to multiple keystroke sequences, in this
case “Ctrl-X 4 f”. Mouse-based functions are supported
under X-windows.

Interesting features
Emacs has a lot of useful, and unusual, features. It’s standard
search method is incremental, meaning that the search is
performed as you type the characters you want to match.
This makes it easy to find the text sequence you want with
the minimum amount of typing.

Emacs understands the syntax of what you are editing. If
you are working with a C program, for example, the tab key
is automatically redefined to indent your code according to
its nesting level, making it easy to spot incorrectly placed
parentheses and braces. You can set up the indenting style to
whatever you are accustomed to. Emacs also understands
syntactic structures so you can move to the beginning or end
of a function or a code block with a single keystroke. When
you are typing closing brackets, braces, or parentheses, the
cursor will momentarily jump to the matching opening
symbol, making it easy to correctly match deeply nested
expressions.

When you are ready to compile your program, you can
do it from within emacs. Emacs interprets the messages
produced by the compiler, so you can jump to successive
errors by simply typing “Ctrl-X `”, even if you compiled
multiple files with “make”. Emacs can do the same thing
with the pattern matching program “grep”.

Emacs has many many more features than I can possibly
present here. I don’t even use most of its capabilities. There
are some people who effectively use emacs as their shell,
doing everything from reading e-mail and network news to
writing, compiling, and testing their programs from within
the editor. For someone who does a lot of editing, and is
tired of the limitations and old-fashioned command structure
of vi, I would recommend having a look at GNU emacs. ✒

Facts in Brief
Runs on: almost any UNIX machine and VMS
How to get it: lots of ftp sites, MUUG PD software

tape (when we put it together)
Disk space: 9.9 MB for the source, 7.6 MB for

executable, LISP libraries, and
documentation

Usefulness: High
Learning: Hard (as cryptic as vi, but has more

commands)
Installation effort: Moderate
Cost: Free

Emacs - The Extensible Self-documenting Text Editor
A Public Domain Software Review

By Roland Schneider

Fall Seminar Announcement

Open Systems - Getting Past the Hype
Thursday, November 19, 1992
Winnipeg Convention Centre

Stay tuned for the joint MUUG and CIPS (Canadian Information Processing Society) fall seminar called Open Systems -
Getting Past the Hype. This event is not to be missed! Keynote speaker, Mr. Tom Wheeler, author of the Open Systems
Handbook, will provide participants with the Open System vision of today and tomorrow. Following this presentation
will be four case studies provided by company/institution representatives dealing with their move to Open Systems.
Such subjects as dealing with the bureaucracy, how to begin, what are the various views and more, will be discussed.
The seminar will conclude with a panel discussion with participants having the opportunity to ask questions of the
various presenters. See next month’s newsletter for more in-depth information.

For more information, call Susan Zuk at 788-7312.

8

HANDS-ON

Using Shared Memory for Inter-Process Communication
Part 3 of 3

By Peter Graham
Many moons ago now, I introduced you to the Unix Sys V
shared memory facilities. I hope you haven’t forgotten
everything since the bulk of this article is simply code. If you
have forgotten things you had best check your back issues
since space prevents me from re-iterating the basics.

In this article I will provide you with some sample code
for a print spooling application using shared memory as the
inter-process communication medium. The example is only
moderately contrived and should make reasonably good
sense to most everyone.

The spooling system consists of a client program which
allows users to specify files to be printed (just as you might
with lpr) and two server programs. There is a spool server
which interacts with the client(s) through a shared memory
buffer to spool the files to be printed and a print server which
interacts with the spool server to actually “print” the spooled
files. (In the interest of brevity, and saving trees, this
application only prints to stdout.) Interaction between the
spool and print servers is also through a shared memory
buffer. For illustrative purposes, data is stored in one buffer
as ASCII characters and in the other using the appropriate
binary encodings. This freedom of choice in data representa-
tion (without hassles) is another advantage of using shared
memory over, say, Unix domain sockets or RPC.

The buffer between the client and spool server is
referred to as the “shared record buffer” and is logically
owned by the spool server. The buffer between the spool and
print servers is referred to as the “shared filename buffer”,
for reasons that will later become clear, and it “belongs” to
the print server. The owner of a given buffer assumes the

responsibility for creating and initializing it.
Naturally enough, access to the shared buffers is

controlled through the use of semaphores.
At any given point in time, several print clients may be

running concurrently. It is their job to read the data in the
files specified by the user and copy (i.e. “spool”) it one line
per record into the shared record buffer for later extraction
by the spool server. (It is assumed that the data to be printed
is printable and linefeed delimited into reasonably small
pieces. A simple labelling protocol is used to distinguish
between records from different files within the buffer since,
due to the concurrency, they may be intermixed. This
protocol also supports the passing such information as the
name of the file, its size, the user who requested the print,
etc. to the spool server process.

The spool server removes records from the shared
record buffer and accumulates them to spool files. (There is
one spool file for each file being printed.) Once all the
records have been received for a given file, the spool server
creates an entry in the shared filename buffer containing the
name of the corresponding spool file and the print informa-
tion received from the client.

The print server removes entries from the shared
filename buffer and adds them to an internal list it maintains
of outstanding work. It then prints the spool files on that list
in an order determined by the size of the file and how long it
has been waiting to print. A typical header page is prepended
to each file as it is printed which contains the file name, print
requestor, etc.

For better or for worse, here is the code:

/****************/
/* sh_rec_buf.h */
/****************/

/* the shared record buffer consists of 250
 * elements of 600 characters each and is
 * implemented as a circular queue. */

#define NUM_SH_REC_ELTS 250
#define ELTSIZE 600

/* a buffer element */
typedef char SH_REC_BUF_ELT[ELTSIZE];

typedef struct srb {
int head, /* head pointer in queue */

tail, /* tail pointer in queue */
used; /* number of elts in queue */

/* the elements themselves */
SH_REC_BUF_ELT elts[NUM_SH_REC_ELTS];

} SH_REC_BUF, *SH_REC_BUF_PTR;

/****************/
/* sh_rec_buf.c */
/****************/

#include <strings.h>
#include "sh_rec_buf.h"

/*
 * srb_init: This routine initializes the shared
 * record buffer. It must be called before either
 * the spool server or any client attempts to
 * access the buffer.
 */

srb_init(qptr)
SH_REC_BUF_PTR qptr;
{

qptr->head=0;

qptr->tail=0;
qptr->used=0;

} /* srb_init */

/*
 * srb_insert: This routine inserts a new element
 * (bufptr) into the shared record buffer (qptr).
 * Synchronized access to the shared buffer is
 * assured using the associated semaphore (sema).
 */

srb_insert(sema,qptr,bufptr)
int sema;
SH_REC_BUF_PTR qptr;
SH_REC_BUF_ELT *bufptr;
{

/* get exclusive access to shared segment */
sem_wait(sema);

/* make sure enough space to insert record*/
while (qptr->used==NUM_SH_REC_ELTS) {

/* buffer full so process must */
/* release semaphore, sleep */
/* and try again later */
sem_signal(sema);
sleep(1);
sem_wait(sema);

}

/* insert the record */
strcpy(qptr->elts[qptr->head],bufptr);
qptr->head=(qptr->head+1)%NUM_SH_REC_ELTS;
qptr->used++;

/* release access to the shared segment */
sem_signal(sema);

} /* srb_insert */

/*
 * srb_remove: This routine removes an element
 * (bufptr) from the shared record buffer (qptr).

 * Synchronized access to the shared buffer is
 * assured using the associated semaphore (sema).
 */

srb_remove(sema,qptr,bufptr)
int sema;
SH_REC_BUF_PTR qptr;
SH_REC_BUF_ELT *bufptr;
{

/* get exclusive access to shared segment */
sem_wait(sema);

/* make sure there's a record to remove */
while (qptr->used==0) {

/* buffer empty so process must */
/* release semaphore, sleep, */
/* and then try again */
sem_signal(sema);
sleep(1);
sem_wait(sema);

}

/* remove and return the record */
strcpy(bufptr,qptr->elts[qptr->tail]);
qptr->tail=(qptr->tail+1)%NUM_SH_REC_ELTS;
qptr->used--;

/* release access to the shared segment */
sem_signal(sema);

} /* srb_insert */

/******************/
/* sh_fname_buf.h */
/******************/

/* the shared filename buffer consists of 25 */
/* elements, implemented as a circular queue. */

#define NUM_SH_FNAME_ELTS 25

9

HANDS-ON
typedef struct fd {

char filename[128];
char spoolname[256];
char requestor[16];
int filesize;
long submit_time;

} SH_FNAME_BUF_ELT;

typedef struct sfb {
int head,

tail,
used;

SH_FNAME_BUF_ELT elts[NUM_SH_FNAME_ELTS];
} SH_FNAME_BUF, *SH_FNAME_BUF_PTR;

/******************/
/* sh_fname_buf.c */
/******************/

#include <strings.h>
#include "sh_fname_buf.h"

/*
 * sfb_init: This routine initializes the shared
 * filename buffer. It must be called before
 * either the print server or the spool server
 * attempts to access the buffer.
 */

sfb_init(qptr)
SH_FNAME_BUF_PTR qptr;
{

qptr->head=0;
qptr->tail=0;
qptr->used=0;

} /* sfb_init */

/*
 * sfb_insert: This routine inserts a new element
 * (fdptr) into the shared filename buffer (qptr).
 * Synchronized access to the shared buffer is
 * assured using the associated semaphore (sema).
 */

sfb_insert(sema,qptr,fdptr)
int sema;
SH_FNAME_BUF_PTR qptr;
SH_FNAME_BUF_ELT *fdptr;
{

/* get exclusive access to shared segment */
sem_wait(sema);

/* make sure enough space to insert record*/
while (qptr->used==NUM_SH_FNAME_ELTS) {

/* buffer full so process must */
/* release semaphore, sleep */
/* and try again later */
sem_signal(sema);
sleep(1);
sem_wait(sema);

}

/* insert the record */
qptr->elts[qptr->head]=*fdptr;
qptr->head=(qptr->head+1)%NUM_SH_FNAME_ELTS;
qptr->used++;

/* release access to the shared segment */
sem_signal(sema);

} /* sfb_insert */

/*
 * sfb_remove: This routine removes an element
 * (fdptr) from the shared filename buffer (qptr).
 * Synchronized access to the shared buffer is
 * assured using the associated semaphore (sema).
 */

int sfb_remove(sema,qptr,fdptr,num_to_print)
int sema;
SH_FNAME_BUF_PTR qptr;
SH_FNAME_BUF_ELT *fdptr;
int num_to_print;
{

/* get exclusive access to shared segment */
sem_wait(sema);

/* make sure there's a record to remove */
if ((qptr->used==0) && (num_to_print!=0)) {

/* return to caller so we don't */
/* block the printing of outstanding*/
/* jobs waiting for another request.*/
return(0);

}
while (qptr->used==0) {

/* buffer empty so process must */
/* release semaphore, sleep, */
/* and then try again */
sem_signal(sema);
sleep(1);
sem_wait(sema);

}

/* remove and return the record */
*fdptr=qptr->elts[qptr->tail];

qptr->tail=(qptr->tail+1)%NUM_SH_FNAME_ELTS;
qptr->used--;

/* release access to the shared segment */
sem_signal(sema);
return(1);

} /* sfb_insert */

/************/
/* client.c */
/************/

#include <stdio.h>
#include <time.h>
#include <unistd.h>
#include <errno.h>
#include <pwd.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include "sh_rec_buf.h"

/* necessary because of problem */
/*with SunOS include file shm.h */
#define SHM_W 0200
#define SHM_R 0400

/* inserts records into shared record buffer */
extern srb_insert();

main(argc,argv)
int argc;
char *argv[];
{

struct passwd *pw_ptr;
/* ptr to passwd structure */

unsigned uid; /* user's numeric userid*/
FILE *in_f;/* input file to read */
char read_buf[513];

/* input file buffer */
int total_bytes;

/* input file bytes count */
int argcnt;

/* current argument to process*/
SH_REC_BUF_ELT data_record;

/* record to insert into */
/* shared record buffer */

long request_time;
/* time of request: together */
/* with filename this uniquely*/
/* identifies a print request.*/

key_t srb_shmkey,
/* key to shared mem. segment */
srb_semakey;
/* key to semaphore */

int srb_segid,
/* shared memory segment ID */
srb_sema;
/* the access semaphore */

SH_REC_BUF_PTR srb_segaddr;
/* pointer to shared buffer */
/* stored in shared mem. seg. */

/* verify that some files were specified */
if (argc<=1) {

printf(
"client: No args specified. Nothing printed.\n");

exit(-1);
}

/* get user info and current time */
uid=getuid();
pw_ptr=getpwuid(uid);

/* create semaphore to control mem. access*/
if ((srb_semakey=ftok(

"/muug/shm3/spool_server.c",
'S'))==-1) {

printf(
"client: Couldn't create semaphore key.\n");

exit(-1);
}
if ((srb_sema=sem_create(srb_semakey,

1))==-1) {
printf(

"client: Couldn't create the semaphore.\n");
exit(-1);

}

/* setup to access shared mem. record buf.*/
if ((srb_shmkey=ftok(

"/muug/shm3/spool_server.c",
'M'))==-1) {

printf(
 "client: Couldn't create shared memory key.\n");

exit(-1);
}
if ((srb_segid=shmget(srb_shmkey,

sizeof(SH_REC_BUF),
SHM_R|SHM_W))==-1) {

printf(
"client: Couldn't get shared memory segment.\n");

exit(-1);
}
if ((srb_segaddr=(SH_REC_BUF_PTR)

shmat(srb_segid,(char *)0,0))==
 (SH_REC_BUF_PTR) (-1)) {

printf(
"client: Couldn't attach shared memory seg.\n");

exit(-1);
}

/* process each argument (file to print) */
for (argcnt=1;argcnt<argc;argcnt++) {

/* check this argument */
if (-1==access(argv[argcnt],R_OK)) {

/* Bad file specified */
if (errno==ENOENT) {

printf(
 "client: The file %s does not exist.\n",

argv[argcnt]);
exit(-1);

} else if (errno==EACCES) {
printf(

 "client: The file %s is inaccessible.\n",
argv[argcnt]);

exit(-1);
} else {

printf(
 "client: Argument number %d is bad.\n",

argcnt);
exit(-1);

}
}
/* get the current (request) time */
request_time=time(0);

/* Create a header record to insert */
/* into the shared buffer */
sprintf(data_record,
 "HDR %s %s %ld\n\0",argv[argcnt],

pw_ptr->pw_name,request_time);
srb_insert(srb_sema,srb_segaddr,

data_record);

/* Read the "records" in specified */
/* file to be printed */
in_f=fopen(argv[argcnt],"r");
total_bytes=0;
while ((fgets(read_buf,

sizeof(read_buf),in_f))
!=NULL) {

/* keep sum of record lengths */
total_bytes+=strlen(read_buf);
/* Form data record to insert */
/* into the shared buffer */
sprintf(data_record,

"DAT %s %d %ld :\0",
argv[argcnt],
strlen(read_buf),
request_time);

strcat(data_record,read_buf);
srb_insert(srb_sema,srb_segaddr,

data_record);
}

/* Form end record to insert into */
/* the shared buffer */
sprintf(data_record,"END %s %d %ld\0",

argv[argcnt],total_bytes,
request_time);

srb_insert(srb_sema,srb_segaddr,
data_record);

fclose(in_f);
}

/* shut down our connection to shared buf.*/
if (shmdt((char *)srb_segaddr)==-1) {

printf(
"client: Couldn't detach shared memory seg.\n");

exit(-1);
}

/* close the semaphore */
sem_close(srb_sema);

} /* main */

/******************/
/* spool_server.h */
/******************/

/* this structure describes a file requested */
/* for spooling. It is used by the spool server */
/* to keep track of all the files it is spooling*/
/* for potentially many clients. */
/* A hashed bucketting scheme is used to allow */
/* us to find particular print requests quickly.*/
/* Within each bucket, a doubly linked list */
/* is used for easy deletion of elements. */

/* a convenient small prime for hash function */
#define HASHTABSIZE 97

typedef struct sr {
char filename[128];

/* name of file to be printed */
char spoolname[256];

/* the spoolfile's name */
int spoolfd;

/* file descriptor for spool file */

10

long submit_time;
/* time when print request made */

char requestor[16];
/* userid of requestor */

struct sr *next,
*prev;

}SPOOLREC, *SPOOLRECPTR;

typedef struct ht {
SPOOLRECPTR buckets[HASHTABSIZE];

} HASHTABLE;

/******************/
/* spool_server.c */
/******************/

#include <stdio.h>
#include <strings.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include "sh_rec_buf.h"
#include "sh_fname_buf.h"
#include "spool_server.h"

/* necessary because of problem */
/* with SunOS include file shm.h */
#define SHM_W 0200
#define SHM_R 0400

#define SPOOLDIR "/tmp/"

extern int srb_remove();
extern int sfb_insert();

static HASHTABLE spooltab;
/* hash table for spool info */

static int print_server_pid;

static key_t srb_shmkey,
srb_semakey;

static int srb_segid,
srb_sema;

static SH_REC_BUF_PTR srb_segaddr;
static struct shmid_ds *srb_shmbufptr;
static key_t sfb_shmkey,

sfb_semakey;
static int sfb_segid,

sfb_sema;
static SH_FNAME_BUF_PTRsfb_segaddr;

/*
 * handler - signal handler to permit graceful
 * killing of the server processes.
 */

handler()
{

/* print out msg so we know we're stopping*/
printf(

"***Spooler shutting down on SIGQUIT signal.\n");
fflush(stdout); /* make sure it's flushed */

/* signal print server to quit as well */
kill(print_server_pid,SIGQUIT);

/* clean up after ourselves */
if (shmdt((char *) srb_segaddr)==-1) {

printf(
"spool_server: Couldn't detach record buffer.\n");

}

if (shmdt((char *) sfb_segaddr)==-1) {
printf(

"spool_server: Couldn't detach filename buf.\n");
}
if (shmctl(srb_segid,IPC_RMID,srb_shmbufptr)

==-1) {
printf(

"spool_server: Couldn't remove record buffer.\n");
}
/* remove semaphore since it's */
/* under our control */
sem_rm(srb_sema);
sem_close(sfb_sema);

/* exit normally */
exit(0);

} /* handler */

/*
 * hash - implements simple-minded hash function.
 */

int hash(sptr)
char *sptr;
{

int hashval;

hashval=0;
for (sptr;(*sptr)!='\0';sptr++) {

/* sum in each character value */
hashval=hashval+*sptr;

}

/* return value mod HASHTABSIZE */
return (hashval%HASHTABSIZE);

} /* hash */

/*
 * process_header - processes a header record
 * received in the shared record buffer. This
 * involves creating a spool record for it,
 * loading the record from the info. in the
 * header record, putting the record into the
 * appropriate hash bucket, and creating
 * a spool file to write the data records into.
*/

int process_header(buf)
char buf[512];
{

char filename[128],
username[16];

long submit_time;
SPOOLRECPTR srecptr,

curr,
prev;

int hashval;
char tmpstr[16];

/* extract file info. from buf */
sscanf(buf,"HDR %s %s %ld",

filename,username,&submit_time);

/* create a record holding information */
/* from the HDR record */
srecptr=(SPOOLRECPTR)

malloc(sizeof(SPOOLREC));
strcpy(srecptr->filename,filename);
strcpy(srecptr->requestor,username);
srecptr->submit_time=submit_time;
srecptr->next=NULL;
srecptr->prev=NULL;

/* form spool file name using the */
/* original filename, the userid of the */
/* print requestor, and the current time. */
strcpy(srecptr->spoolname,SPOOLDIR);
strcat(srecptr->spoolname,username);
strcat(srecptr->spoolname,"_");
strcat(srecptr->spoolname,filename);
strcat(srecptr->spoolname,"_");
sprintf(tmpstr,"%ld",submit_time);
strcat(srecptr->spoolname,tmpstr);

/* create the spool file and leave */
/* the open file descriptor in the */
/* corresponding spool structure */
if ((srecptr->spoolfd=creat(

srecptr->spoolname,
0600)) == -1) {

printf(
"spool_server: Couldn't create spool file.\n");

exit(-1);
}

/* hash to the appropriate bucket */
hashval=hash(filename);

/* insert at end of that list */
prev=NULL;
for (curr=spooltab.buckets[hashval];

curr!=NULL;curr=curr->next) {
prev=curr;

}
if (prev==NULL) {

/* first element on list */
spooltab.buckets[hashval]=srecptr;

} else {
prev->next=srecptr;
srecptr->prev=prev;

}
} /* process_header */

/*
 * process_data - processes a data record from
 * the shared record buffer by extracting it,
 * finding the spool record for the corresponding
 * file to determine what spool file to write the
 * data to and then writing the data to that file.
 */

int process_data(buf)
char buf[512];
{

char filename[128];
int recsize;
long submit_time;
char text[512];
SPOOLRECPTR curr;
int hashval;
char *sptr;
int tidx;

/* extract file info. from buf */
sscanf(buf,"DAT %s %d %ld",

filename,&recsize,&submit_time);
tidx=0;
sptr=index(buf,':');

for (sptr++;*sptr!='\0';sptr++) {
text[tidx++]=*sptr;

}
text[tidx]='\0';

/* find the correct bucket */
hashval=hash(filename);

/* Scan down the list to find the spool */
/* record in question. Both the */
/* filename and submit time must match. */
for (curr=spooltab.buckets[hashval];
 strcmp(filename,curr->filename)

 &&(submit_time==curr->submit_time);
 curr=curr->next) {
}

/* copy this record to appropriate file */
write(curr->spoolfd,text,recsize);

} /* process_data */

/*
 * process_end - processes an END record from the
 * shared record buffer. This involves closing
 * the corresponding spool file and creating and
 * inserting a record for the print server into
 * the shared filename buffer.
 */

int process_end(buf)
char buf[512];
{

char filename[128];
int filesize;
long submit_time;
SPOOLRECPTR curr;
int hashval;
SH_FNAME_BUF_ELT rec;

/* extract file info. from buf */
sscanf(buf,"END %s %d %ld",

filename,&filesize,&submit_time);

/* find the correct bucket */
hashval=hash(filename);

/* Scan down the list to find the spool */
/* record in question. Both the */
/* filename and submit time must match. */
for (curr=spooltab.buckets[hashval];
 strcmp(filename,curr->filename)

 &&(submit_time==curr->submit_time);
 curr=curr->next) {
}

/* close so it can be opened by server */
close(curr->spoolfd);

/* format and write a print request to */
/* shared filename buffer */
strcpy(rec.filename,curr->filename);
strcpy(rec.spoolname,curr->spoolname);
strcpy(rec.requestor,curr->requestor);
rec.filesize=filesize;
rec.submit_time=curr->submit_time;
sfb_insert(sfb_sema,sfb_segaddr,&rec);

/* delete the spool record from the list */
if (curr->next!=NULL) {

curr->next->prev=curr->prev;
}
if(curr->prev!=NULL) {

curr->prev->next=curr->next;
} else {

spooltab.buckets[hashval]=curr->next;
}

} /* process_end */

main(argc,argv)
int argc;
char *argv[];
{

int i;
SH_REC_BUF_ELT data_record;

/* extract pid of print server from */
/* argv[1] and store it */
sscanf(argv[1],"%d",&print_server_pid);

/* setup signal handler to catch SIGQUIT */
signal(SIGQUIT,handler);

/* Initialize hash buckets - no entries */
for (i=0;i<HASHTABSIZE;i++) {

spooltab.buckets[i]=NULL;
}

/* create a semaphore to control access */
/* to shared record buffer */
if ((srb_semakey=ftok(

"/muug/shm3/spool_server.c",
'S'))==-1) {

printf(
"spool_server: Couldn't create srb sem. key.\n");

exit(-1);

HANDS-ON

11

}
if ((srb_sema=sem_create(srb_semakey,1))

==-1) {
printf(

"spool_server: Couldn't create srb semaphore.\n");
exit(-1);

}

/* setup to access shared mem. record buf.*/
if ((srb_shmkey=ftok(

"/muug/shm3/spool_server.c",
'M'))==-1) {

printf(
"spool_server: Couldn't create srb seg. key.\n");

exit(-1);
}
if ((srb_segid=shmget(srb_shmkey,

sizeof(SH_REC_BUF),
 IPC_CREAT|SHM_R|SHM_W))
==-1) {

printf(
"spool_server: Couldn't create the srb seg.\n");

exit(-1);
}
if ((srb_segaddr=(SH_REC_BUF_PTR)

shmat(srb_segid,(char *)0,0))
 ==(SH_REC_BUF_PTR) (-1)) {
printf(

"spool_server: Couldn't attach shrd.mem. seg.\n");
exit(-1);

}

/* create a semaphore to control access */
/* to the shared filename buffer */
if ((sfb_semakey=ftok(

"/muug/shm3/print_server.c",
'S'))==-1) {

printf(
"spool_server: Couldn't create sfb sem. key.\n");

exit(-1);
}
if ((sfb_sema=sem_create(sfb_semakey,1))

==-1) {
printf(

"spool_server: Couldn't create the sfb sem.\n");
exit(-1);

}

/* setup to access shared filename buf. */
if ((sfb_shmkey=ftok(

"/muug/shm3/print_server.c",
'M'))==-1) {

printf(
"spool_server: Couldn't create sfb seg. key.\n");

exit(-1);
}
if ((sfb_segid=shmget(sfb_shmkey,

sizeof(SH_FNAME_BUF),
 SHM_R|SHM_W))==-1) {

printf(
"spool_server: Couldn't create the sfb seg.\n");

exit(-1);
}
if ((sfb_segaddr=(SH_FNAME_BUF_PTR)

shmat(sfb_segid,(char *)0,0))
 ==(SH_FNAME_BUF_PTR) (-1)) {
printf(

"spool_server: Couldn't attach sfb segment.\n");
exit(-1);

}

/* initialize the shared record buffer */
srb_init(srb_segaddr);

/* repeatedly read from shared record buf.*/
/* servers almost always run infinite loop*/
for (;;) {

srb_remove(srb_sema,srb_segaddr,
data_record);

switch (data_record[0]) {
case 'H': /* a Header record */

 process_header(data_record);
 break;

case 'D': /* a Data record */
 process_data(data_record);
 break;

case 'E': /* an End record */
 process_end(data_record);
 break;

}
}

} /* main */

/******************/
/* print_server.h */
/******************/

/* Structure describes print job to be done. */
/* A doubly linked list of them is maintained */
/* to permit easy deletion. */
typedef struct pr {

char filename[128]; /* orig. filename */
char spoolname[256]; /* spool filename */
long submit_time; /* time job was */

/* "submitted" */

int filesize; /* print file size*/
char requestor[16]; /* his/her ID */
int prio; /* print priority */
struct pr *next,

*prev;
} PRINTREC, *PRINTRECPTR;

/******************/
/* print_server.c */
/******************/

#include <stdio.h>
#include <strings.h>
#include <time.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include "sh_fname_buf.h"
#include "print_server.h"

/* necessary because of problem */
/* with SunOS include file shm.h */
#define SHM_W 0200
#define SHM_R 0400

#define SPOOLDIR "/tmp/"

static PRINTRECPTR printqptr;
static key_t sfb_semakey,

sfb_shmkey;
static int sfb_segid,

sfb_sema;
static SH_FNAME_BUF_PTRsfb_segaddr;
static struct shmid_ds *sfb_shmbufptr;

/*
 * handler - signal handler to permit graceful
 * killing of the server processes.
 */

handler()
{

/* print message so we know we're stopping*/
printf(

"***Server shutting down on spooler's signal.\n");
fflush(stdout); /* make sure it's flushed */

/* sleep for a bit to allow spool server */
/* to let go of the shared filename */
/* buffer and semaphore */
sleep(1);

if (shmdt((char *) sfb_segaddr)==-1) {
printf(

"print_server: Couldn't detach filename buf.\n");
}
if (shmctl(sfb_segid,IPC_RMID,

sfb_shmbufptr)==-1) {
printf(

"print_server: Couldn't remove record buf.\n");
}
/* remove semaphore since it's */
/* under our control */
sem_rm(sfb_sema);

/* exit normally */
exit(0);

} /* handler */

/*
 * print_prio - calculate print priority of a job.
 */

int print_prio(size,time_waiting)
int size;
long time_waiting;
{

/* Print priority should increase with */
/* waiting time and decrease with the */
/* size of the print job! */

/* The value 10000 approximates 10 pages */
/* of output. Jobs of more than 10000 */
/* characters will automatically have the */
/* lowest priority and will be printed */
/* FCFS after all smaller jobs. Smaller */
/* jobs will be assigned priorities based */
/* on their relative sizes. */
return ((int)((float)(100000.0/size)

*time_waiting)%100);
}

/*
 * process_new_request - This routine processes a
 * new print request once it has been removed from
 * the shared filename buffer. It does this by
 * queueing up the request info. on a print queue.
 */

int process_new_request(frecptr)
SH_FNAME_BUF_ELT *frecptr;
{

char filename[128];
char spoolname[256];
char username[16];

int filesize;
long submit_time;
PRINTRECPTR precptr,

curr,
prev;

/* add print job to print queue */
precptr=(PRINTRECPTR)

malloc(sizeof(PRINTREC));
strcpy(precptr->filename,frecptr->filename);
strcpy(precptr->spoolname,

frecptr->spoolname);
strcpy(precptr->requestor,

frecptr->requestor);
precptr->filesize=frecptr->filesize;
precptr->submit_time=frecptr->submit_time;
precptr->next=NULL;
precptr->prev=NULL;
if (printqptr==NULL) {

/* first entry on list */
printqptr=precptr;

} else {
/* add onto existing list at end so */
/* big print jobs will get FCFS */
/* service. (i.e. no starvation) */
prev=NULL;
for (curr=printqptr; curr!=NULL;

curr=curr->next) {
prev=curr;

}
precptr->prev=prev;
prev->next=precptr;

}
} /* process_new_request */

/*
 * select_and_print - This routine selects the
 * next print job from the print queue using the
 * print_prio function to make its choice. Once
 * selected the job is "printed" (to the screen)
 * complete with a header page.
 */

int select_and_print()
{

PRINTRECPTR prtptr,
currprtjobptr;

int num_on_queue,
highprio;

FILE *in_f;
char ch;
long currtime,

seconds,
minutes,
hours,
time_waiting;

/* select entry to print - must scan all */
/* jobs on print queue and calculate */
/* function current waiting time, then */
/* apply priorization using waiting time */
/* and file size to select a job */
currtime=time(0);

num_on_queue=0;
/* start by calculating current print */
/* priorities and counting the number of */
/* outstanding print jobs on the queue */
for (prtptr=printqptr;prtptr!=NULL;

prtptr=prtptr->next) {
prtptr->prio=

print_prio(prtptr->filesize,
currtime - prtptr->submit_time);

num_on_queue++;
}

/* now rescan print queue to */
/* find highest priority job */
highprio=-1;
for (prtptr=printqptr;prtptr!=NULL;

prtptr=prtptr->next) {
if (prtptr->prio>highprio) {

highprio=prtptr->prio;
currprtjobptr=prtptr;

}
}

/* remove this print job from queue */
if (currprtjobptr->next!=NULL) {

currprtjobptr->next->prev=
currprtjobptr->prev;

}
if (currprtjobptr->prev!=NULL) {

currprtjobptr->prev->next=
currprtjobptr->next;

} else {
printqptr=currprtjobptr->next;

}

/* print banner page */
printf(

"\f\n\n\n\n\n\n\n\n---------------------------------
------------------------\n");

printf("| Filename: %s\n",
currprtjobptr->filename);

HANDS-ON

12

if ((sfb_segid=shmget(sfb_shmkey,
sizeof(SH_FNAME_BUF),
IPC_CREAT|SHM_R|SHM_W))==-1) {

printf(
"print_server: Couldn't create sfb segment.\n");

exit(-1);
}
if ((sfb_segaddr=(SH_FNAME_BUF_PTR)

shmat(sfb_segid,(char *)0,0))
 ==(SH_FNAME_BUF_PTR) (-1)) {
printf(

"print_server: Couldn't attach sfb segment.\n");
exit(-1);

}

/* initialize the shared filename buffer */
sfb_init(sfb_segaddr);

/* initially there are no jobs to print */
num_to_print=0;

/* repeatedly read from shared record buf.*/
/* servers almost always run infinite loop*/
for (;;) {

/* Remove an element from shared */
/* filename buffer if there's one */
/* there. If there isn't and there */
/* are outstanding print jobs */
/* ('num_to_print!=0') then */
/* sfb_remove() will return 0. */
/* Otherwise, it'll wait for new */
/* request to arrive then return 1. */

if (sfb_remove(sfb_sema,sfb_segaddr,
&filerec,num_to_print)) {

/* queue up returned request */
process_new_request(&filerec);

}

/* pick outstanding job and process */
/* 'select_and_print' returns the */
/* number of remaining jobs */
num_to_print=select_and_print();

}
} /* main */

fclose(in_f);

/* delete spool file */
unlink(currprtjobptr->spoolname);

/* free space allocated by queue element */
free(currprtjobptr);

/* return an indication of number */
/* of print jobs still queued */
return(--num_on_queue);

} /* select_and_print */

main()
{

SH_FNAME_BUF_ELT filerec;
int num_to_print;

/* setup signal handler to catch SIGQUIT */
signal(SIGQUIT,handler);

/* initially no jobs to print */
printqptr=NULL;

/* create semaphore to control */
/* access to filename buffer */
if ((sfb_semakey=ftok(

"/muug/shm3/print_server.c",
'S'))==-1) {

printf(
"print_server: Couldn't create sfb sem. key.\n");

exit(-1);
}
if ((sfb_sema=sem_create(sfb_semakey,1))

==-1) {
printf(

"print_server: Couldn't create sfb semaphore.\n");
exit(-1);

}

/* setup to access shared filename buffer */
if ((sfb_shmkey=ftok(

"/muug/shm3/print_server.c",
'M'))==-1) {

printf(
 "print_server: Couldn't create sfb key.\n");

exit(-1);
}

printf("| Requestor: %s\n",
currprtjobptr->requestor);

printf("| Size in bytes: %d\n",
currprtjobptr->filesize);

printf("| Print priority: %d\n",
currprtjobptr->prio);

printf("| Print Time: %s",
ctime(&currtime));

printf("| Time spent waiting to print: ");
time_waiting=

currtime-currprtjobptr->submit_time;
seconds=time_waiting%(long) 60;
time_waiting-=seconds;
minutes=(time_waiting%(long) 3600);
time_waiting-=minutes;
minutes=minutes/(long) 60;
hours=time_waiting/(long) 3600;
if (hours!=0) {

if (hours==1) {
printf("%ld hour ",hours);

} else {
printf("%ld hours ",hours);

}
}
if (minutes!=0) {

if (minutes==1) {
printf("%ld minute ",minutes);

} else {
printf("%ld minutes ",minutes);

}
}
if (seconds!=0) {

if (seconds==1) {
printf("%ld second ",seconds);

} else {
printf("%ld seconds ",seconds);

}
}
printf(

"\n---
-------\n\f");

/* write spool file to output */
/* can assume it exists and is readable. */
in_f=fopen(currprtjobptr->spoolname,"r");
while ((ch=fgetc(in_f))!=EOF) {

putchar(ch);
}

Seminar Announcement

The Winnipeg Chapter of the Canadian Information
Processing Society (CIPS) invites you to its 1992/93
season “kick-off” seminar. A computer security seminar
with a difference – hold onto your seat for an international
race to catch an elusive hacker that 'll leave you breathless.

Someone breaks into your computer. What do you do?
Slam the door? Call the police? Ignore the problem?

For a year, a German broke into over forty military
computers around the world. By silently tracking him
back, he learned that he was a spy, passing information to
the Soviet KGB. Recently he was convicted of espionage.

What technique did he use to crack into computers?
Where are the holes in our systems? How do you trace
someone across the worldwide computer networks? Who
was willing to help — who wasn’t?

Cliff’s talk, Stalking the Wily Hacker, will address
these questions. A fun time is guarenteed for all.

The Cuckoo’s Egg, the book describing this incident,
tells the true story of tracking a spy through the maze of
computer espionage.

Clifford Stoll is an astronomer by training and a
computer security expert by accident. Since catching the

Hanover Hacker he has become a leading authority on
computer security, delivering more lectures on the subject
than he cares to admit. He has given talks in the United
States for both the Central Intelligence Agency (CIA) and
National Security Agency (NSA) and has appeared before
the U.S. Senate.

Call Susan Zuk at 788-7312 to receive a registration
form, or send a cheque with the required amount payable to
“Canadian Information Processing Society” and send to:

Canadian Information Processing Society
P.O. Box 2610, Winnipeg, Manitoba R3C 4B3

Please include the following information: Name,
Registration Type (CIPS, Non-Member, Full Time Stu-
dent), Fee, Company Name, Address, City, Postal Code,
Phone, Fax.

Seminar fees are as follows:
CIPS Members $35
Non-members $45
Full Time Student $20
Late Registration add $ 5

(Late registration is required if postmarked after
September 4, 1992)

Clifford Stoll: Stalking the Wily Hacker
A Breakfast Seminar

Thursday, 7:30 AM, September 10, 1992
Winnipeg Convention Centre

Brought to you by CIPS (Canadian Information Processing Society)

HANDS-ON

13

MEETINGS

TUUG Meeting Minutes
for

Tuesday, May 12, 1992, 7:30 PM
234B Engineering Bldg.
University of Manitoba

Ft. Garry Campus

Agenda
for

Tuesday, September 8, 1992, 7:30 PM
234B Engineering Bldg.
University of Manitoba

Ft. Garry Campus

1. Round Table 7:30

2. Business Meeting 8:00
a) President’s Report
b) MUUG By-laws
c) Membership Dues
d) MUUG Online User Fees
e) Nominations for the Board
f) New Business

3. Break 8:20

5. Presented Topic 8:30
An Introduction to MUUG Online
By Roland Schneider
With the UofM Computer Centre’s donation of the use of
a well-networked Sun 386i to our group, our long-
awaited jump into modern computer communications is
finally at hand. Many MUUG members have already
taken advantage of this service. This talk will introduce
the service, for those who haven’t used it yet, and show
you how to use it. It will also demonstrate the help
facilities, e-mail, Usenet news, and networking in
general, and explain how the different networks work.

6. Adjourn 9:30

Note: Please try to arrive at the meeting between
7:15 and 7:30 pm. Thank You.

Chair: Susan Zuk
Attendance: 47

Business meeting:
a) President's Report

• There was significant interest in MUUG’s booth at the
MWCS computer fest.

• The MUUG Online project is making progress.
• MUUG hopes for future joint projects with CIPS.
• The process of affiliation with UniForum is proceeding.

b) Membership Report
• TUUG currently has 84 members

c) Treasurer’s Report
• MUUG has $1800 in chequing account and $8000

invested.
d) New Business

• Moved by Gilbert Detillieux, seconded by Peter
Graham, that the MUUG executive be authorized to
spend up to $2600 to acquire a large SCSI disk for the
MUUG Online system.
- other, preferably free, alternatives will be explored

before a disk is purchased.
- passed unanimously.

Presented topic:
Future trends at Intel – Jon Coxworth, Intel Corp.

Coming Up

Meeting:
Our next meeting is scheduled for Tuesday, October 13,
at 7:30 PM. Meeting topic and location will be given in
October’s newsletter. The important items on the agenda
will be the vote on the adoption of the MUUG by-laws,
and the election of the board members for the 1992-1993
year. The presented topic might be part 2 of the presen-
tation on MUUG Online, or it might be something else,
depending on who and what we can line up for then.
Stay tuned for an update.

Newsletter:
We might have a continuation to RPC Programming by
Scott Balneaves. I also have a few “filler” articles by
Roland Schneider. Apart from that, there are no other
articles in the pipeline. I could use some more material,
especially shorter articles – half a page to one page in
length would be fine. I would like to see some more
book reviews – have you read any good books lately?
Monsieur Ex has also let me know that his mail-box is
empty lately – please submit your questions via e-mail
to <m-ex@muug.mb.ca> or by FAX to the editor.

