
1

TUUG Lines

UNIX is a registered trademark of UNIX System Laboratories, Inc.

Meeting Location:
This month, the meeting is to be held at the Senate
Chambers, room 245 in the new Engineering
Building of the University of Manitoba, Ft. Garry
Campus.
 The meeting is set to start at the usual time – 7:30
PM, on April 14, 1992. The Senate Chambers are
on the main floor, near the entrance that faces
University Centre.

Meeting Agenda:
See last page for details.

Have You Read Any Good UNIX Books Lately?
By Richard Kwiatkowski

Technical UNIXUser Group

Volume 4, Number 6 April 1992 $2.50 (cheap)

Newsletter of the Technical UNIX  User Group

While reading the March newsletter’s Feedback
column, I noticed that someone asked for a recom-
mendation on any good UNIX books. This re-
minded me of my experience and frustration when
I went looking for books on UNIX. When I first
found out that our new computer system was
going to be UNIX based, I rushed out to the book
stores in search of books on UNIX. To my sur-
prise, there were few, if any, books to be found. It
makes it difficult to compare which book is better
when you have such a small selection to from
which to choose, and more importantly, you know
nothing about UNIX. I asked the clerk if they had
any more books on UNIX; he typed into his
computer terminal, and up popped a screen full of
choices. Which one would I like to order? This
was even more difficult than picking a book off
the shelf, because you can’t flip through it before
you buy it. I bought two books off the shelf and
ordered one more.

While I was learning Unix and I found a need
to look up a specific UNIX command, I would
read through all the books that I had. After a
while, it became clear that the most complete book

that I had was called UNIX System V Release 4 —
The Complete Reference, by Stephen Coffin.

I would like to create and maintain a list of
UNIX books for the user group. In order for me
to do this, I would like you to send me your
comments on the UNIX books that you have read.
You can send your comments to:

Richard Kwiatkowski
838 Atlantic Ave.

Winnipeg, MB R2X 1L4
or FAX it to me at 943-4797, or call me at
589-4857. ✒

Newsletter Editor’s Ramblings
President’s Corner
The Fortune File
Feedback: Ask Monsieur

Poisson D’Avril
Hands-on: Wonders of E-mail;

RPC Programming Part 3
UNIX Bits: Files with Holes
April 14th Meeting Agenda
TUUG Vote Results

INSIDE THIS ISSUE

THIS MONTH’S MEETING

2

The Technical UNIX User Group meets at
7:30 PM the second Tuesday of every month,
except July and August. The newsletter is
mailed to all paid up members one week prior
to the meeting. Membership dues are $20
annually and are due at the October meeting.
Membership dues are accepted by mail and
dues for new members will be pro-rated
accordingly.

Technical UNIX User Group
P.O. Box 130

Saint-Boniface, Manitoba
R2H 3B4

Internet E-mail:
tuug@cs.umanitoba.ca

This newsletter is opyrighted by the Technical
UNIX User Group. Articles may be reprinted
without permission, for non-profit use, as long as
the article is reprinted in its entirety and both the
original author and the Technical UNIX User
Group are given credit.

The Technical UNIX User Group, the editor, and
contributors of this newsletter do not assume any
liability for any damages that may occur as a result
of information published in this newsletter.

President: Susan Zuk (W) 788-7312
Past President: Eric Carsted 1-883-2570
Vice-President: Richard Kwiatkowski 589-4857
Treasurer: Rick Horocholyn (W) 474-4533
Secretary: Roland Schneider 1-482-5173
Membership Sec.: Allan Moulding 269-8054
Mailing List: Gilles Detillieux 489-7016
Meeting Coordinator: Eric Carsted 1-883-2570
Newsletter editor: Gilbert Detillieux 489-7016
Information: Susan Zuk (W) 788-7312

(FAX) 788-7450
(or) Gilbert Detillieux (H) 489-7016

(FAX) 269-9178

Wow! The responses to my earlier pleas for more
articles are still coming in. For the first time ever,
I’ve got material ahead of time, ready for the next
month’s newsletter. A big “thank you” to all our
contributors, particularly to our regular contribu-
tors. Locally written material is what makes this
newsletter special.

We’ve had to rearrange our newsletter sched-
ule for May. As a result, the deadline for submis-
sions for the May edition is now April 17 (Good
Friday). The newsletter is likely to be mailed out
earlier than usual as well. In any case, this ad-
vanced deadline shouldn’t be a problem, since I
have all the material I need for the next edition.

If you have something you want to submit, go
ahead anyway. If I can’t fit it in for May, there’s

Getting Involved, ... and Loving It!
By Gilbert Detillieux

always the June edition.
As was announced at the last meeting, TUUG

will have a booth at the Muddy Waters Computer
Society Computer Fest, to be held at the conven-
tion centre on Sunday, April 26, 10:00 AM to 6:00
PM. By being present at this event, we hope to
increase the group’s visibility, and promote the
recent changes, such as the name change, and the
affiliation with UniForum Canada. We need
volunteers to occupy the booth for that day (or for
a short portion of the day). Ideally, we would like
to have 6 to 8 people, each putting in about 2
hours. If you are interested in helping out for a
shift, please contact Susan Zuk.

Enjoy the newsletter. Hope to see you at the
April meeting, and at the Computer Fest too. ✒

RAMBLINGS

Copyright Policy and DisclaimerThe 1991-1992 Executive

Our Address Group Information

3

PRESIDENT’S CORNER

You Are Invited to Participate...
By Susan Zuk, President

Submitted by Ken Stewart

“Almost Live” (a local comedy show in Toronto) did a
sketch on Microsoft’s “management style” because of the
recent Buisness Week article.
• Employee of the month gets a gold watch and a small

Mediterranean island.
• At board meetings, all members must dress like their

favorite Star Trek character. Bill always gets to be
Spock.

• Corner offices with a view are awarded to programmers
who can make Mountain Dew come out of their noses at
lunch meetings.

• At Christmas time, everyone gets presents from their
“Secret Geek.”

• Promotions are guaranteed for all executives who pick
Bill first for their softball team.

• Each afternoon, everyone runs over to IBM, rings the
doorbell, and hides.

• Best idea of the week gets you an hour alone with Bill’s
money.

Submitted from all over the place

Fake mail header found in a news posting:
X-Mac-Bust: The Best Way To accelerate a Macintoy

is at 9.8m/s^2

Found in a news posting signature:
“My karma ran over my dogma.”

Another signature:
“Warning: Do not drive with Auto-Shade in place.
 Remove from windshield before starting ignition.”

Notable quote:
“If anyone disagrees with anything I say, I am quite
prepared not only to retract it, but also to deny
under oath that I ever said it.” —T. Lehrer

Main’s Law:
For every action there is an equal and opposite
government program.

THE FORTUNE FILE

Can you believe that winter is over? It even feels like
spring. The UNIX group is halfway through it's mandate.
The accomplishments of the group have been extensive in
the past 12 month. Our membership has more than doubled
and new people are joining all the time. We held a success-
ful UNIX Symposium and are in the middle of making
some big decisions which could change the group quite
significantly. We also have active participation in our
newsletter and a very supportive membership. From the
response we have received from the survey, we can see that
members are interested in what the group is doing and
where it will be going in the future.

We will be relaying summary information of the results
of the survey in the next newsletter and will work towards
implementing your suggestions. For those of you who are
interested in helping the group in its quick growth path, we
will be contacting you shortly. Voting has been completed
on the name change as well as the affiliation to UniForum
Canada. Based on the results of the vote we will proceed
with changing our name to the Manitoba UNIX User Group
and with the motions to become an affiliate of UniForum
Canada. We will be informing you of the status in up-
coming meetings and newsletters. The executive would
like to thank all those who took the time to respond. The
group would like to start our fall season with a large
promotion of the new name and affiliation. For those who
are interested in personally joining UniForum Canada, we

will provide you with this information in the next issue of
the newsletter.

On Sunday, April 26th, the Muddy Water Computer
Society is holding a Computer Fest. Our group will be
represented at this show. The show is being held at the
Convention Centre from 10:00 A.M. to 6:00 P.M. If you
can help out for an hour or 2 please give me a call. We will
be promoting our group to the Winnipeg community and
would appreciate your help.

In March I attended a conference in Toronto called the
Open Systems and UNIX Executive Symposium. This
symposium was comprised of Case Studies of real life
situations where UNIX and Open Systems are being
implemented. Companies such as the Toronto Stock
Exchange, American Airlines, American Express, and the
Department of National Defence spoke on their experi-
ences. Topics which were highlighted included reasons
why the move was being made to Open Systems, how it
was being implemented, what to watch for when going
through the process, why to make the change, who to have
on your side and if it has made a difference. I will be
relaying what occurred in the next issue of our newsletter.

That's all I have to say for now. Our next meeting
should prove to be very interesting. I hope you are attend-
ing and can help us welcome Amdahl Canada in presenting
their UNIX offering for mainframe systems. ✒

4

Ask Monsieur Poisson D’Avril
Our resident Unix expert, Monsieur Ex, who normally answers questions submitted by members,
is away with a bad case of spring fever. An old friend of his, Monsieur Poisson D’Avril, fills in.

Edited by Gilbert Detillieux

FEEDBAG

Dear Editor,
I couldn’t resist a short addendum (or two):
In “The Internet, UUCP, Mail, News, and All That”,

TUUG Lines 4(5), March 1992, Roland Schneider writes:
 Say I’m visiting a friend at IBM in New York ... [all I

have to do is] type “telnet rum.ee.umanitoba.ca”.
Well, Roland neglects to mention that, assuming he had

a friend at IBM in New York ;-) , he would first have to
spend a week doing paperwork to get authorization for his
packets to make it past the bit-o-matic packet dicer and slicer
which lives at the gateway out of the building! Sometimes
there’s more to life than meets the technological eye :-(.

Further, Roland writes:
... too slow for ... X ...
Not necessarily so Roland! Say that your friend from

IBM in New York is visiting your other friend at the
University of Calgary, and say that your IBM friend wants
to show off his latest whiz-bang X application for display-
ing the behavior of parallel processing systems. All he has
to do (there’s no authorization bureaucracy in Calgary) is
telnet to his workstation in New York, set his DISPLAY
environment variable to point at the X server on the
workstation in Calgary, start up his application, and Voila!
(Apologies to Monsieur Ex for lack of the correct accent.) It
turns out that packet round trips from Calgary to New York
to Calgary, as reported by ping, can average 800-1500 ms
on a good night. A bit sluggish perhaps, but more than
adequate for effective demonstrations of system monitoring
and animation software. Ain’t technology grand?

Finally, I notice that ee.umanitoba is now naming their
workstations after their beverage of choice (not surprising
for an ee department, but commendable nonetheless).
Inspired by their progressive attitude, I’m about to rename
all of my workstations after Canadian beers.

Keep up the good work out there. I follow your
continued success with great delight.

Your friend at IBM in New York, - Doug K.
(soon to be dnk@oldstock.watson.ibm.com)
(or dnk@jobhunting.fired_for_abuse_of_internet.un-

employmentline.gov)
P.S. The opinions expressed above are strictly those of

the author, and in no way represent the views of the IBM
Corporation.

M. D’Avril’s reply:
While I would prefer les bons vins Français to Canadian

beers, your bon-vivant spirit and patriotism (for an expatriate
Canadian) are quite commendable. Perhaps we’ll be able to
reach you some day at dnk@moose_head.watson.ibm.com?

Glad to hear you still enjoy the newsletter. Please keep
in touch.

Cher Monsieur Ex,
Votre réponse à la question «How do you combine two

files into one file» est très dangereuse. Si on utilise
cat file1 file2 > both

quand les fichiers «file1» et «both» sont égaux, un désastre
va suivre.

Cheers, Michael Doob.

M. D’Avril’s reply:
Merci pour votre lettre. Your concern for the safety of

novice users is appreciated (No one ever accused M. Ex of
being overly cautious.) Novice users of the C-shell (csh)
should look into the noclobber option to safeguard against
this sort of accident.

Q. What is the difference between a 386 and a 486?
A. One hundred, last time I checked. Mais sérieusement, as
far as the software is concerned (even for O.S. software), the
two are identical. Both implement the 386 architecture and
instruction set. The differences are in the hardware organiza-
tion. The 486 uses more pipelining to improve speed, and
has more circuitry on the chip, such as an integrated floating
point coprocessor.

In short, versions of UNIX for the 386 should work fine
on a 486 system.

Q. What is life?
A. Ah, une question philosophique! This is a tough one, so
I’ll ask the computer to help me with this one:

% whatis life
life(6) - John Conway’s game of life

As I’ve always suspected, life is merely a game. Now, if I
can figure out who John Conway is, I might get somewhere:

% whois "John Conway"
No match for "JOHN CONWAY".

I didn’t think it would be that easy. I guess if I were
responsible for life, I wouldn’t want to leave a forwarding
address either. À la prochaine, peut-être. ✒

M. Ex, a mysterious Frenchman who claims to be an old
editor and an expert in UNIX, will hopefully be all better in
time for next month’s column.
Incidentally, Poisson D’Avril is french for “April Fool.”
Gilbert Detillieux is a founding member of TUUG, and a
past president, yet he was naïve enough to give these two
cretins space in the newsletter without checking their
credentials. Must be a slow month.

5

HANDS-ON

The Wonders of ElectronicMail
or Why I Hate FAX Machines

By Roland Schneider

What makes electronic mail (or e-mail) such a useful tool?
Consider this: it combines some of the best features of a
telephone on a PBX, an answering machine, a fax machine,
and file exchange via floppy disk.

An example: A client wants to tell me that he’s run into
trouble with a software package. He sends me e-mail
containing a description of the problem, along with output
generated by the program and the contents of a configura-
tion file. Even if I’m away from my desk, the message will
be waiting on my computer when I come back. I look at the
message and electronically forward the relevant parts to the
program’s author, while saving the original message so that
I can track the service call. The author turns out to be on
vacation, so his e-mail system automatically replies to tell
me when he’ll be back, and also gives me the address of a
co-worker who may be able to help. I send the same
message, which was automatically saved, to the co-worker.
A few hours later, he replies with a message containing a
binary patch to the software, encoded into displayable
characters, which I then forward to my client, along with
detailed instructions describing how to extract the patch
from the message and install it.

The process is the same whether the people involved
are in a single building, a city, country, or almost anywhere
in the world. I can use the same messaging system to make
a squash date with the guy in the next room, or even to
leave myself a note to buy flowers for Mother’s Day.
Messages will sit in my electronic mailbox until I deal with
and delete them. If a message arrives while I’m at my
computer, it beeps and the little flag on the mailbox icon
goes up. I can deal with the message immediately, or leave
it until I finish whatever I’m doing.

How it Works
So much for trying to convince you that e-mail is wonder-
ful. Now, how does it work? Most mail systems are split
into two pieces — the user agent (UA), which you use to
send and read mail, and the routing software, called the
message transfer agent (MTA), which handles the actual
transmission of mail to its destination. As long as every-
thing is configured properly, users need only be concerned
with the user agent, since it provides the user interface,
including forwarding and message archival features. There
are several to choose from, some commercial, some free,
some for serial terminals, some for X-windows, etc. Most
can be set up to work with whatever routing software is
available.

Of course, it’s in the routing software where all the
magic happens. How does a message from
czarow@eleceng.ee.queensu.ca (a friend who's a
professor in Kingston) to rsch@ee.umanitoba.ca (me)
get to its destination? Well, that depends on how the

different systems involved are hooked together. In this case,
the likely route will be:
1) The message originates on cz1.ee.queensu.ca .

This small, personal machine doesn’t know much,
except that the machine eleceng.ee.queensu.ca
knows more, so the message is sent there using SMTP
(simple mail transfer protocol) over a TCP/ethernet
connection.

2) Eleceng doesn’t know much either, so it sends the
message to qucdn.queensu.ca , an IBM main-
frame, by the same method.

3) Qucdn, or rather, the person administering e-mail on
it, knows enough to recognize the
ee.umanitoba.ca part of the address and contact
eeserv.ee.umanitoba.ca directly via the
Internet, although it could have just recognized
umanitoba.ca and contacted
ccu.umanitoba.ca , which would have forwarded
the message to eeserv .

4) Eeserv.ee.umanitoba.ca looks up what appears to be a
local address in the mail address alias database, and
finds that it’s really destined for
rsch@rol.selkirk.ee.umanitoba.ca , which
isn’t on the network, but is reachable via UUCP, so it
queues the message and waits for my machine to call
up. (It could call me too, but I didn’t set it up that way)

5) My machine automatically polls eeserv for mail four
times per day, and picks up the message. The flag on
my mailbox icon goes up, and I have my mail — all I
have to do is double click my mouse on the icon.

6) I can reply to the message by clicking on the “Reply”
button, which will automatically fill in the address and
subject. The path back to my friend will be similar, but
not the same: from rol to eeserv to ccu to
eleceng .

Some Technical Stuff
With the possible exception of the IBM mainframe, the

machines in this example all run a program called sendmail.
Users don’t interact with sendmail — it runs as a daemon
and coordinates mail activity according to the rules in a the
configuration file sendmail.cf . Sendmail does two
things: it examines (and possibly modifies) the “To: ” and
“From: ” addresses in a message, and then, as is appropri-
ate for each particular destination address, either executes
an external program to deliver the message, or contacts
another sendmail on another machine via SMTP over a TCP
link. Determining how to rewrite the addresses and which
machine to contact or which program to run is the job of the
rules in the sendmail.cf file.

Figuring out which one of millions of machines to
contact is made easier by the strategy of simply contacting

6

someone who knows more than you do. A personal machine
contacts a departmental machine, which contacts a com-
pany machine, which contacts another company's machine,
which contacts the appropriate departmental machine,
which in turn contacts a personal machine in the depart-
ment, which delivers the message to the recipient. That’s
why the dot-separated parts of a mail address refer to
organizational entities — each mail forward-
ing machine only needs to determine if the
address is within it’s “domain”, in which
case it forwards down to the smaller
organizational entity to the left of “its”
part of the address (e.g. company to
department) or, if it isn’t, it forwards
up. (e.g. company to regional)

The Internet-wide domain name
service contains information which
can be used to short-circuit this
procedure in some cases — that’s
why ccu.umanitoba.ca contacted
eleceng.ee.queensu.ca directly,
instead of going through
qucdn.queensu.ca . Note that
machine names frequently form part of
an e-mail address, but this isn’t strictly necessary, it’s just
convenient since the organizational structure of machine
and e-mail administration is usually similar.

The ability to execute an external program gives
sendmail much added flexibility. For example, if a step in
mail routing requires using UUCP, the sendmail.cf file
specifies that the “rmail ” program is to be run with
arguments determined from the destination address. Rmail
accepts the message from sendmail and queues it for
forwarding via UUCP. Similar special-purpose programs can
be used to forward to other mail systems in different
environments, like VAX es running VMS, Macs using
Quickmail, etc. You can set things up so that e-mail
destined for people who don’t use computers is automati-
cally printed in the department office so that it can be put in
an old-fashioned paper-type mailbox. There are even
systems which allow you to send mail to a special address
which causes the message to be translated into a fax image
and sent to the phone number specified in the address.

Alternatives to Sendmail
Not all versions of UNIX come with sendmail. How-

ever, there is freely redistributable source available, so it is
generally possible to install it. Alternatively, there is smail,
also available for free, which can be used either with or
without sendmail, and provides sendmail-like functionality
for UUCP links. Generally, smail is simpler than sendmail,

and may be appealing for that reason alone.
Some vendors may provide other mail-
routing facilities.

A much better alternative, which
avoids much of this hodge-podge, is to
use a mail system based on the X.400 mail
protocol. This standardizes the format of
mail addresses and messages and provides
extra features like registered mail,
messages containing binary information,
etc. It also avoids much of the complexity

of the sendmail.cf file by specify-
ing only a single way to write an
address. Unfortunately, X.400-based
systems are not yet widespread, and I
don’t know of any free software
implementing it. Generally, X.400

systems have gateways to non-X.400 systems, but most of
the features and simplicity are lost as soon as a gateway is
involved.

Why do I hate fax machines? Because they have
offered an easy, although inferior, alternative to e-mail,
which has delayed the development, adoption, and imple-
mentation of mail standards like X.400. Because e-mail
involves sending information between computers made by
different vendors, widely implemented industry-wide
standards are essential. A ideal e-mail system should allow
not only text, but also pictures and digitized sound to be
sent, should provide for encryption and sender authentica-
tion (like a signature) for legal purposes, and should be as
wide-spread as fax machines are now. Well, some day.

In the meantime, e-mail available with existing
systems, although not perfect, is an indispensable tool. Like
the telephone, it becomes more useful, even essential, as
more and more people and companies are connected. ✒

HANDS-ON

Files with Holes
copy a file with cp , it will read all those fake zeros,
making the copy a filled-in version of the original, which
can use a lot of disk space. The tape utility tar has the
same problem, but dump does not. It’s safe to rename
these files with mv as long as you stay on the same file
system.

One of the most common files with holes is the core
dump file “core .” The system just dumps out the various
parts of the program’s virtual address space, creating a file
which may appear to be 8 megabytes long, when it
actually occupies less than 200K.

Winnipeg streets have potholes in the spring, so can
the knees of your pants, but disk files? Sure, why not?.
What happens if you open a file, write() a few blocks,
and then lseek() way past the end of the file and
write() some more? What gets put in the middle?
Nothing, if your version of UNIX supports files with
holes. What if you try to read that nothing? You get zeros.

The nothing does not occupy any space on your disk,
although ls -l will be fooled and will tell you that you
have a huge file. Use ls -s to get the real story. Not
many UNIX utilities understand files with holes, so if you

UNIX BITS

7

HANDS-ON

Sun RPC Programming III
98.34% of All Statistics Are Made Up.

By Scott Balneaves

This time we have a slightly less trivial (but only slightly)
RPC programming example. However, we’ll explain the
powerful protocol compiler rpcgen(1) that can create most
of the “drudge work” code for you, leaving your time free
to do the more interesting parts of your application.

The rpcgen(1) language specification
I won’t go into all of the boring details. You can check out
your manuals for these bits. However, I will gloss over the
major ingredients of the language.

When you run a protocol specification language file
(usually ending in a .x suffix) through the rpcgen compiler,
you’ll usually end up with 4 files. for a file called barfaz.x,
you’ll end up with: barfaz_clnt.c (the client side stubs),
barfaz_svc.c (the server registration procedures),
barfaz_xdr.c (the XDR stubs to translate your data) and
barfaz.h (the header file for your application). We’ll see how
the contents of the .x file map into real C programs below.

The language itself resembles C very closely. I’ll use
the protocol specification file from this month’s sample
code as our working example:

/*
 * FILE stats.x:
 * RPCL Protocol definition for a
 * statistics server. PROCS include
 * SUM, MEAN, and STDDEV.
 */
const MAX_DATA = 256;

typedef double stat_data<MAX_DATA>;

program STATPROG {
version STATVERS {

double SUM(stat_data) = 1;
double MEAN(stat_data) = 2;
double STDDEV(stat_data) = 3;

} = 1;

} = 0x20000099;

The first working line is pretty obvious. It sets up a sym-
bolic constant called MAX_DATA to 256. The next line
looks somewhat familiar to a C typedef, but it’s not exactly
the same. It defines an array of doubles (up to a maximum
of MAX_DATA, 256), to be the type stat_data. You’ll
notice we used the <> bracket pair, instead of the normal C []
pair. You can use these, if you want, but if you do, then you
will always send to the server 256 doubles of data. With the
angle brackets (<>), you’ll only send down the data that you
actually use. In the file stats.h you’ll see the definitions:

#define MAX_DATA 256
typedef struct {

u_int stat_data_len;
double *stat_data_val;

} stat_data;

You’ll notice that the stat_data is now a structure with both
a pointer to a double, and the length of the allocated array
of doubles (in units of doubles, not in bytes). You don’t
have to worry about allocating the memory for the data
values other than in your client program. The generated
XDR routines will handle the transfer of this structure.

You’ll remember the numbers we had to assign to any
RPC procedure: The program number, the version number,
and the procedure number. These are handled by the
constructs:

program STATPROG { ... } = 0x20000099;
and

version STATVERS { ... } = 1;
and produce the following lines in stats.h:

#define STATPROG ((u_long)0x20000099)
#define STATVERS ((u_long)1)

You’ll remember how we said that you could have multiple
procedures in an RPC server? This program is an excellent
example of this. We have defined three procedures:

double SUM(stat_data) = 1;
double MEAN(stat_data) = 2;
double STDDEV(stat_data) = 3;

All three (SUM, MEAN, STDDEV) accept a type stat_data
as a parameter, and return a double as a result. They have
procedure numbers 1, 2, and 3 respectively. These result in
the following definitions being placed in the stats.h file:

#define SUM ((u_long)1)
extern double *sum_1();
#define MEAN ((u_long)2)
extern double *mean_1();
#define STDDEV ((u_long)3)
extern double *stddev_1();

As you can see, rpcgen will even be so nice as to create the
function prototypes we need. rpcgen will normally tack on
the version number of the procedure to the end of the
procedure name. Since we already defined these procedures
to be version 1, we get functions sum_1, mean_1, etc.

In addition, rpcgen generates the XDR routines needed
to send the stat_data structure down the network, and the
server and client stubs. The server stubs basically consist of
the code needed to register your service, and dispatch
incoming requests to your routines. The rpcgen compiler
will automatically create both a TCP and a UDP version of
your routines for you, so that your clients can simply choose
the transport that they want. In fact, for the server at least,

8

HANDS-ON
all you need to do is write the actual routines themselves that
are doing the actual work of your RPC server. On the client
side, the stubs are created for you to make the calls. All you
need to do is create the client handle (the “connection”
between the client and the server) and make the calls.

The Statistics Server
Our hypothetical client/server example this time is a statisti-
cal server. It has 3 procedures. Each are passed the list of
data elements, and return a double. Procedures include ones
that calculate sum of the data, mean (average) of the data,
and the standard deviation. What’s important here isn’t so
much what the server is doing, but howthe pieces fit together.

I’ll only publish here the parts that you’ll need to type
in. However, take a look at the stats_svc.c, stats_clnt.c,

stats_xdr.c, and stats.h files generated by the rpcgen com-
piler. I’ve included a simple Makefile for this example, as
it’s gotten complicated enough to merit one. To compile the
server, type:

make server
For the client:

make client
To start the server, use:

stats_svc &
and to run the client, type:

stats <machine_name>
where machine name is the name of the machine that the
server is running on.

Next Time: RPC performance tips. ✒

Makefile:
CLIENTS = stats.c stats_clnt.c stats_xdr.c
SERVERS = stats_svc.c stats_proc.c stats_xdr.c

server :
rpcgen stats.x
$(CC) $(SERVERS) -o stats_svc -lm

client: stats
$(CC) $(CLIENTS) -o stats

/*
 * FILE stats.x:
 * RPCL Protocal definition for a
 * statistics server. PROCS include
 * SUM, MEAN, and STDDEV.
 */
const MAX_DATA = 256;

typedef double stat_data<MAX_DATA>;

program STATPROG {
version STATVERS {

double SUM(stat_data) = 1;
double MEAN(stat_data) = 2;
double STDDEV(stat_data) = 3;

} = 1;
} = 0x20000099;

/*
 * File stats_proc.c:
 * These are the statistics procedures that we
 * want. They are relly quick, dirty, and ugly.
 * Note that with XDR data, we always deal with a
 * POINTER to the data we are working with, never
 * with the data itself. So in some instances
 * (i.e. strings, or our list of doubles here)
 * you will be dealing with a pointer to a pointer.
 * keep this in mind, or you'll have no end of
 * core dumps to contend with.
 * in my experience, this is usually the most
 * common gotcha in rpc programming.
 */
#include "stats.h"
#include <math.h>

double *
sum_1(the_data)
stat_data *the_data;
{

static double result = 0.0;
int ctr;
double *ptr;

ptr = the_data->stat_data_val;
for (ctr = 0; ctr < the_data->stat_data_len;

ctr++)
result += *(ptr++);

return(&result);
}

double *
mean_1(the_data)
stat_data *the_data;
{

static double result = 0.0;
int ctr;
double *ptr;

ptr = the_data->stat_data_val;
for (ctr = 0; ctr < the_data->stat_data_len;

ctr++)
result += *(ptr++);

result /= (double) the_data->stat_data_len;
return(&result);

}

double *
stddev_1(the_data)
stat_data *the_data;
{

static double result = 0.0;
int ctr;
double avg, tmp, sum;
double *ptr;

ptr = the_data->stat_data_val;
avg = tmp = sum = 0;
for (ctr = 0; ctr < the_data->stat_data_len;

ctr++)
avg += *(ptr++);

avg /= (double) the_data->stat_data_len;

9

HANDS-ON
ptr = the_data->stat_data_val;
for (ctr = 0; ctr < the_data->stat_data_len;

ctr++) {
tmp = *(ptr++) - avg;
sum += tmp * tmp;

}
sum = sum /

(double) (the_data->stat_data_len - 1);
result = sqrt(sum);
return(&result);

}

/*
 * File stats.c:
 * Statistical Client Program.
 *
 * This program malloc()'s an arry of doubles, and
 * statically initializes it with fixed numbers.
 * It then calls the RPC server stat_svc to obtain
 * the sum, mean, mode and standard deviation of
 * the data.
 */
#include <stdio.h>
#include <rpc/rpc.h> /* needed by all RPC pgms */
#include "stats.h" /* generated by rpcgen */

int
main(argc, argv)
int argc;
char *argv[];
{

CLIENT *cl;
stat_data my_data;
double *ptr;
char *server;
double *result;

/*
 * Get name of server from command line
 */
if (argc != 2) {

fprintf("usage:: %s servername\n",
argv[0]);

exit(1);
} else {

server = argv[1];
}

/*
 * create the client handle. If this fails,
 * print the error and exit.
 */
if (!(cl = clnt_create(server, STATPROG,

STATVERS, "udp"))) {
clnt_pcreateerror(server);
exit(1);

}

/*
 * Now that we have client handle created,
 * let's allocate our array of doubles.

 * Note that we have to know the internals of
 * the stat_data structure and set the _len
 * and _val members.
 */
my_data.stat_data_len = 20; /* twenty #'s */
if ((my_data.stat_data_val = (double *)

malloc(20 * sizeof(double))) == NULL) {
fprintf("%s: couldn't malloc array\n",

argv[0]);
exit(1);

}
/* make a copy of the pointer */
ptr = my_data.stat_data_val;

/*
 * Initialize array with some static values
 * This is pretty gross, however, this is
 * just an example. You'd probably want to
 * read these from stdin, a file, etc.
 */
*(ptr++) = (double) 234.519;
*(ptr++) = (double) 52.254;
*(ptr++) = (double) 62.8736;
*(ptr++) = (double) 186.73;
*(ptr++) = (double) 91.736;
*(ptr++) = (double) 132.85;
*(ptr++) = (double) 29.483;
*(ptr++) = (double) 76.723;
*(ptr++) = (double) 77.5243;
*(ptr++) = (double) 91.72;
*(ptr++) = (double) 92.1;
*(ptr++) = (double) 91.398;
*(ptr++) = (double) 89.357;
*(ptr++) = (double) 109.28;
*(ptr++) = (double) 116.93;
*(ptr++) = (double) 117.0;
*(ptr++) = (double) 277.91;
*(ptr++) = (double) 17.37;
*(ptr++) = (double) 97.348;
*(ptr++) = (double) 98.8;

/* make our calls */
result = sum_1(&my_data, cl);
if (result != NULL)

printf("sum is %lf\n", *result);
else

fprintf(stderr, "sum_1() failed\n");
result = mean_1(&my_data, cl);
if (result != NULL)

printf("mean is %lf\n", *result);
else

fprintf(stderr, "mean_1() failed\n");
result = stddev_1(&my_data, cl);
if (result != NULL)

printf("standard deviation is %lf\n",
*result);

else
fprintf(stderr, "stddev_1() failed\n");

/* We're done! Return success ! */
return(0);

}

10

MEETINGS

Next Month

Meeting:
Our May meeting is scheduled for Tuesday, May
12, at 7:30 PM. The presented topic is to be
announced. The meeting will start off with our
usual round table and business meeting. Location is
also TBA.

Newsletter:
We will likely continue with our Q&A column, and
RPC Programming by Scott Balneaves, next month.
I also have an article on shared memory by Peter
Graham, and several “filler” articles by Roland
Schneider. I also hope to have a write-up on DEC’s
new 64-bit Alpha architecture, and specifications on
it’s first microprocessor based on this technology.

TUUG Vote Results
Tuesday, March 10, 1992, 7:30pm
CIIT Building Conference Room

435 Ellice Ave.

Although we don’t have minutes from last month’s meeting,
since there was no formal business meeting then, here are the
results of the votes on the proposed name change, and the
proposed affiliation with UniForum Canada.

Ballot sheets were sent to each TUUG member with the
March newsletter. There were 63 paid up members at the
time. A total of 26 ballots were returned, either by mail or at
the March meeting.

On the question of changing the group’s name to
“Manitoba Unix User Group,” 25 voted in favour, with one
abstention. On the question of affiliation with UniForum
Canada, 25 voted in favour, with one abstention.

In addition to the votes on these two motions, the ballot
sheet also surveyed members to determine who would be
interested in signing up for an individual membership in
UniForum Canada. (There was no obligation to join by
answering “yes” to this survey question.). Of the 26 respond-
ents, 14 indicated an interest in UniForum Canada member-
ship.

Thanks to all members who took the time to respond.
Based on the results of the vote, both motions are carried.
We will now proceed with a name search and name notation
for the new group name (until that point, we will continue to
use the name TUUG). We will also now proceed with our
discussions with UniForum Canada regarding affiliation.
You will be informed of these changes as they become
official.

Agenda
for

Tuesday, April 14, 1992, 7:30 PM
Senate Chambers

245 Engineering Bldg.
University of Manitoba

Ft. Garry Campus
1. Round Table 7:30

2. Business Meeting 8:00
a) President’s Report
b) Membership Secretary’s Report
c) Newsletter Editor’s Report
d) Treasurer’s Report
e) Meeting Coordinator’s Report
f) New Business

3. Break 8:20

5. Presented Topic 8:30
Unix on the Mainframe - Amdahl’s UTS
Jeff Patterson, Amdahl Canada Ltd.
The presentation will show how Unix is
moving into the mainframe world and how
this can affect organizations that have
moved (or plan to move) to Open Systems/
Unix. The presentation will cover several
interelated topics: Open Systems vs. Pro-
prietary Systems - Today, Unix on the
Mainframe, Open Systems Challenges,
Open Systems vs. Proprietary Systems -
The Future. While Amdahl realizes that
most people don’t think of a mainframe as
a destination for Unix applications, there
are clients, environments, applications and
situations where it may be a viable alterna-
tive, and we wish to address that.

6. Adjourn 9:30

Note: Please try to arrive at the meeting between
7:15 and 7:30 pm. Thank You.

Volunteers Needed

We need about 6 to 8 people to help out with the
group’s booth at the MWCS Computer Fest on Sunday,
April 26. Volunteers will get free admission to the
Computer Fest. See page 2 for details.

