
01

Updated, with a new chapter:

Implementing ModSecurity in Production

 MODSECURITY 3.0
 & NGINX: Quick Start Guide

by Faisal Memon, Owen Garrett, and Michael Pleshakov

© NGINX, Inc 2018

 MODSECURITY 3.0
 & NGINX: Quick Start Guide

NGINX Plus + ModSecurity WAF + Trustwave Commercial Rules

 Comprehensive protection
 for your applications

Cost savings – Consolidated WAF, load balancer,
and more reduces complexity and provides
PCI-DSS compliance at a fraction of the cost
of hardware WAFs

Battle tested – The most trusted name in
application security, ModSecurity, now combined
with the most trusted name in application
delivery, NGINX

Regular updates – The Trustwave SpiderLabs
Research Team monitors vulnerability lists and
“zero-day” sources to provide new rules to help
keep your application safe

Learn more at nginx.com

 “Availability and scalability are incredibly important, but security
is most important for us. With the ability to meet our security
requirements and stay ahead of the curve, NGINX Plus is our
vehicle for moving forward.”

–Sean McElroy, VP of IT and CISO at Alkami Technology

http://nginx.com

i

Table of Contents

Preface . iii

1.	Introduction . . 1

A Brief History of ModSecurity . 1
How ModSecurity Works . . 2
ModSecurity 3.0’s New Architecture . 4
Caveats . 5

2.	Installing ModSecurity . .6

NGINX Open Source Installation Instructions . 7
NGINX Plus Installation Instructions . . 10
Verifying the Installation . 11
Conclusion . 16

3.	Installing the OWASP Core Rule Set . 17

Overview of the OWASP Core Rule Set . 18
Pre-installation: Running the Nikto Scanning Tool . 20
Installing and Enabling the OWASP CRS . 20
Testing the CRS . . 21
Limitations . 25
Conclusion . 25

4.	Installing the Trustwave SpiderLabs Commercial Rule Set 26

Overview . 26
Prerequisites . . 27
Configuring the Trustwave SpiderLabs Rules . 27
Caveats for the SecRemoteRules Directive . 29
Limitations . 30
Conclusion . 30

5.	Enabling Project Honeypot . 31

How Project Honeypot Works . . 31
Set Up Your Honeypot . 32
Add the Honeypot Link to All Pages . 34
Enable IP Reputation in the Core Rule Set . 34
Verify It Works . 35
Conclusion . 36

ii

6.	Logging . 37

Audit Log . 38
Debug Log . 41
Conclusion . 42

7.	Implementing ModSecurity in Production . . 43

Tuning to Minimize False Positives . 43
Disabling the Audit Log . 44
Not Inspecting Static Content . 45
Using NGINX for DDoS Mitigation and Rate Limiting . 46
Other Production-Readiness Tips . 47
Conclusion . 47

Appendix A: Document Revision History . 48

iii

 Preface
For several years, one of the features most requested by the NGINX community
was an integration with ModSecurity. The simplest solution, porting the popular
ModSecurity plug-in for Apache HTTP Server to NGINX, turned out not to be
feasible. The wait ended in 2017, when ModSecurity 3.0 was released as the
first version to work natively with NGINX.

ModSecurity is an open source web application firewall (WAF). ModSecurity
protects applications against a broad range of Layer 7 attacks, such as SQL
injection (SQLi), local file inclusion (LFI), and cross‑site scripting (XSS). These
three attack vectors together accounted for 95% of known Layer 7 attacks
in Q1 2017, according to the report, Akamai State of the Internet – Security.
The report also states that the purpose of attacks varies, but the majority are
aimed at stealing data.

ModSecurity is used by over a million websites today, making it the world’s
most widely deployed WAF. ModSecurity is open source and community-
driven, which has led to its broad adoption by organizations ranging from small
businesses to governments and the enterprise. It uses a rules language
based on the Perl Compatible Regular Expression (PCRE) standard, which
makes it much more accessible than many other WAFs.

This ebook was created to help you get up and running with ModSecurity 3.0
and NGINX Open Source, or ModSecurity 3.0 and NGINX Plus, as quickly and
easily as possible.. It covers how to install, enable the major features of, and
troubleshoot ModSecurity 3.0. Please use other resources available online,
including the brilliant ModSecurity Handbook, if you need more information
about ModSecurity before you put it into production.

I hope this guide will be helpful to you in your journey with ModSecurity 3.0
and NGINX.

–�Faisal Memon
Product Marketer, NGINX, Inc.

https://content.akamai.com/am-en-pg8854-q1-17-soti-security.html
https://www.feistyduck.com/books/modsecurity-handbook/

1ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 1 – Introduction

“�ModSecurity is not a high-flying, cloud-enabled,

machine-learning mastermind. It is better to think

of ModSecurity as of a mechanical watch.”

–Dr. Christian Folini, co-lead, OWASP Core Rule Set project

A Brief History of ModSecurity

ModSecurity was originally created by Ivan Ristić to help
protect several web applications he was responsible for
at the time. He envisioned creating a software solution
that would sit in front of these applications, analyzing the
data as it flowed in and out. A solution like this could both
provide visibility and block potential attacks.

Ristić then set out to create this solution as a hobbyist
side project, resulting in a plug-in for Apache HTTP Server.
By November 2002 he put out the first open source release, calling his work
ModSecurity. ModSecurity quickly gained in popularity, as it provided instant
value as a tool for protecting web-based applications.

From there, events followed:

•	 2004: ModSecurity commercialized as Thinking Stone; Ristić quits day job
to focus fulltime on ModSecurity

•	 2006: Thinking Stone acquired by Breach Security

•	 2006: ModSecurity 2.0 released

•	 2009: Ristić leaves Breach Security and the ModSecurity project

•	 2010: Breach Security acquired by Trustwave; additional releases follow

•	 2017: ModSecurity 3.0 released with support for NGINX and NGINX Plus

1 Introduction

Ivan Ristić, creator
of ModSecurity

2ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 1 – Introduction

Today, Trustwave continues to be the corporate sponsor of ModSecurity,
funding development of the open source project while also offering a
commercial rule set.

How ModSecurity Works

As a WAF, ModSecurity is specialized to focus on HTTP traffic. When an
HTTP request is made, ModSecurity inspects all parts of the request for any
malicious content or anomalies. If the request is deemed malicious it can be
blocked, logged, or both, depending on configuration.

ModSecurity 3.0 is a dynamic module for NGINX and NGINX Plus

ModSecurity uses a database of “rules” that define malicious behaviors.
ModSecurity 3.0 supports both the OWASP ModSecurity Core Rule Set (CRS),
the most widely used, open source rule set for ModSecurity, and the Trustwave
commercial rule set, for which users pay a fee. The OWASP CRS is community‑
maintained and has been tuned through wide exposure to have very few
false positives.

https://github.com/SpiderLabs/owasp-modsecurity-crs

3ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 1 – Introduction

SQL Injection (SQLi) is one of the most common exploits, accounting for over 51%
of known web application attacks, according to the report, Akamai State of the
Internet – Security. This type of attack exploits improper validation of user
input fields, such as forms. As a simple example, consider an attacker entering
the following into a login form (the password field is unmasked for clarity):

someone_else
Username

Password

1' or '1'='1

Log In

A Simple SQL Injection attack example

If a web application uses the information entered on the form directly to
form a SQL query for retrieving user information from a database, without
first validating the password, it generates an SQL statement like this:

SELECT * FROM Users WHERE Username='someone_else' AND
Password='1' OR '1' = '1';

Because the statement '1' = '1' is always true, this query bypasses the pass
word check and allows the attacker to log in as someone_else (or any other
account). If a request matches any of the SQL injection rules, ModSecurity
can drop the packet, log it, or both, as configured.

There are similar rules in the CRS to detect and stop other common attacks,
such as cross-site scripting (XSS) and local file inclusion (LFI).

https://www.akamai.com/uk/en/about/our-thinking/state-of-the-internet-report/global-state-of-the-internet-security-ddos-attack-reports.jsp
https://www.akamai.com/uk/en/about/our-thinking/state-of-the-internet-report/global-state-of-the-internet-security-ddos-attack-reports.jsp

4ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 1 – Introduction

ModSecurity 3.0’s New Architecture

Previous versions of ModSecurity, up through version 2.9, did technically
work with NGINX, but suffered from poor performance. This is because
ModSecurity was wrapped inside a full version of Apache HTTP Server, which
provided a compatibility layer. ModSecurity was very heavily tied to Apache.
ModSecurity 3.0, however, is a complete rewrite of ModSecurity that works
natively with NGINX without requiring Apache.

API
libModSecurity 3.0

(standalone)
NGINX

Connector

ModSecurity 3.0 architecture with NGINX and NGINX Plus

This new architecture in version 3.0 moves the core functionality into a
stand‑alone engine called libmodsecurity. The libmodsecurity component
interfaces with NGINX through an optimized connector called the NGINX
connector. There is also a separate connector for Apache.

The ModSecurity dynamic module for NGINX combines libmodsecurity and
the NGINX connector in a single package. The NGINX Plus distribution includes
the compiled dynamic module. NGINX Open Source users have to compile
the ModSecurity source code each time they change NGINX versions.

The new module is considerably faster and more stable than the legacy module
has been with NGINX Open Source, and is actively supported by the NGINX, Inc.
and Trustwave teams.

5ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 1 – Introduction

Caveats

ModSecurity 3.0 does not yet have feature parity with the previous version,
ModSecurity 2.9. Please be aware of the following limitations:

•	 Rules that inspect the response body are not supported and are ignored if
included in the configuration. The NGINX sub_filter directive can be used
to inspect and rewrite response data. In the OWASP Core Rule Set, these
are the 95x rules.

•	 The OWASP Core Rule Set DDoS mitigation rules (REQUEST-912-DOS-
PROTECTION.conf) are not supported. See chapter 7, section Use NGINX for
DDoS Mitigation and Rate Limiting, for an alternative way of enabling DDoS
mitigation using NGINX.

•	 Inclusion of the request and response body in the audit log is not supported

•	 Some directives are not implemented; you may get an error if you try to use
them. The ModSecurity Reference Manual lists all the available directives in
ModSecurity and whether or not they are supported in libModSecurity.

There is no set date for ModSecurity 3.0 to reach feature parity with
ModSecurity 2.9, but it is under active development, and each new release
reduces the gap.

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual

6ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 2 – Installing ModSecurity

“�Web applications – yours, mine, everyone’s –
are terribly insecure on average. We struggle
to keep up with the security issues and need
any help we can get to secure them.”

–Ivan Ristić, ModSecurity creator

This chapter covers how to install ModSecurity 3.0 for both NGINX Open Source
and NGINX Plus. NGINX Open Source users need to compile ModSecurity from
source. NGINX Plus users use the pre-compiled ModSecurity 3.0 dynamic
module provided by NGINX, Inc.

 Installing
 ModSecurity2

Benefits of Using ModSecurity 3.0 with NGINX Plus
ModSecurity 3.0 for NGINX Plus is known as the NGINX WAF. There are a
number of benefits to the commercial subscription:

•	 You don’t need to compile the ModSecurity dynamic module yourself;
NGINX, Inc. provides a precompiled module for you, saving time and effort

•	 NGINX, Inc. has extensively tested the dynamic module, so you know it’s
suitable for production usage

•	 NGINX, Inc. continually tracks changes and updates the module for
every important change and security vulnerability, so you don’t have to
do this yourself

•	 Each new release of NGINX Plus includes a new version of the dynamic
module, so you can upgrade without having to re-compile ModSecurity

•	 You get 24x7 support with both installation of the ModSecurity and the
OWASP Core Rule Set, as well as troubleshooting and debugging assistance

7ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 2 – Installing ModSecurity

NGINX Open Source Installation Instructions

Installation Overview
In NGINX 1.11.5 and later, you can compile individual dynamic modules without
compiling the complete NGINX binary. After covering the compilation process
step by step, we’ll explain how to load the ModSecurity dynamic module into
NGINX and run a basic test to make sure it’s working.

1 – Install NGINX from Our Official Repository
If you haven’t already, the first step is to install NGINX. There are multiple ways
to install NGINX, as is the case with most open source software. We generally
recommend you install NGINX from the mainline branch in our official repository.
For instructions, please see: nginx.org/en/linux_packages.html#mainline.

The instructions in this chapter assume that you have installed NGINX from
our official repository. They might work with NGINX as obtained from other
sources, but that has not been tested.

Note: NGINX 1.11.5 or later is required.

2 – Install Prerequisite Packages
The first step is to install the packages required to complete the remaining
steps in this tutorial. Run the following command, which is appropriate for a
freshly installed Ubuntu/Debian system. The required packages might be
different for Red Hat Enterprise/CentOS/Oracle Linux:

$ apt-get install -y apt-utils autoconf automake build-essential
git libcurl4-openssl-dev libgeoip-dev liblmdb-dev libpcre++-dev
libtool libxml2-dev libyajl-dev pkgconf wget zlib1g-dev

3 – Download and Compile libmodsecurity
With the required prerequisite packages installed, the next step is to compile
ModSecurity as an NGINX dynamic module. In ModSecurity 3.0’s new modular
architecture, libmodsecurity is the core component which includes all
rules and functionality. The second main component in the architecture is a
connector that links libmodsecurity to the web server it is running with. There
are separate connectors for NGINX and Apache HTTP Server. We cover the
NGINX connector in the next section.

https://www.nginx.com/blog/compiling-dynamic-modules-nginx-plus/
http://nginx.org/en/linux_packages.html#mainline

8ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 2 – Installing ModSecurity

To compile libmodsecurity:

A.	 Clone the GitHub repository.

B.	 Change to the ModSecurity directory and compile the source code:

$ git clone --depth 1 -b v3/master --single-branch
https://github.com/SpiderLabs/ModSecurity

$ cd ModSecurity
$ git submodule init
$ git submodule update
$./build.sh
$./configure
$ make
$ make install

The compilation takes about 15 minutes, depending on the processing power
of your system.

Note: It’s safe to ignore messages like the following during the build process. Even when
they appear, the compilation completes and creates a working object:

fatal: No names found, cannot describe anything.

4 – Download the NGINX Connector for ModSecurity and Compile it
as a Dynamic Module
Compile the ModSecurity connector for NGINX as a dynamic module for NGINX.

A.	� Clone the GitHub repository:

$ git clone --depth 1 https://github.com/SpiderLabs/ModSecurity-
nginx.git

9ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 2 – Installing ModSecurity

B.	� Determine which version of NGINX is running on the host where the
ModSecurity module will be loaded:

$ nginx -v
nginx version: nginx/1.13.7

C.	� Download the source code corresponding to the installed version of
NGINX (the complete sources are required even though only the dynamic
module is being compiled):

$ wget http://nginx.org/download/nginx-1.13.7.tar.gz
$ tar zxvf nginx-1.13.7.tar.gz

D.	� Compile the dynamic module and copy it to the standard directory
for modules:

$ cd nginx-1.13.7
$./configure --with-compat --add-dynamic-module=../ModSecurity-nginx
$ make modules
$ cp objs/ngx_http_modsecurity_module.so /etc/nginx/modules

5 – Load the NGINX ModSecurity Connector Dynamic Module
Add the following load_module directive to the main (top‑level) context in
/etc/nginx/nginx.conf. It instructs NGINX to load the ModSecurity dynamic
module when it processes the configuration:

load_module modules/ngx_http_modsecurity_module.so;

http://nginx.org/en/docs/ngx_core_module.html?&_ga=2.246667585.451997568.1512262028-848204253.1505747885#load_module

10ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 2 – Installing ModSecurity

NGINX Plus Installation Instructions

This section explains how to install the NGINX web application firewall (WAF).
The NGINX WAF is built on ModSecurity 3.0.

The NGINX WAF is available to NGINX Plus customers as a downloaded
dynamic module at an additional cost. To purchase or start a free trial of
NGINX WAF, or add the NGINX WAF to an existing NGINX Plus subscription,
contact the NGINX sales team at nginx-inquires@nginx.com.

Prerequisites
Install NGINX Plus R12 or later following these instructions:
nginx.com/resources/admin-guide/installing-nginx-plus/.

Installing the NGINX WAF
To install the dynamic module for the NGINX WAF, perform the following steps.

1.	� Use the OS package‑management utility to install the dynamic module
from the NGINX Plus module repository. The following command is
appropriate for Debian and Ubuntu systems. For systems that use RPM
packages, substitute the yum install command:

$ sudo apt-get install nginx-plus-module-modsecurity

2.	� Add the following line in the top‑level (“main”) context of
/etc/nginx/nginx.conf:

load_module modules/ngx_http_modsecurity_module.so;

https://www.nginx.com/resources/admin-guide/nginx-plus-modsecurity-waf-installation-logging/#contact-us
mailto:nginx-inquires%40nginx.com?subject=
http://nginx.com/resources/admin-guide/installing-nginx-plus/

11ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 2 – Installing ModSecurity

3.	� Run the following command to verify that the module loads successfully,
as confirmed by the indicated output:

$ sudo nginx -t
nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginx.conf test is successful

Verifying the Installation

Example: Configuring ModSecurity 3.0 with a Simple Rule
In this section we configure a simple ModSecurity rule to block certain requests
to a demo application. NGINX acts as the reverse proxy in the example, but the
same configuration applies to load balancing. The demo application is simply
an NGINX virtual server that returns status code 200 and a text message.
It serves as the demo application in the chapters about using rule sets with
the ModSecurity 3.0 as well.

NOTE: This section applies to both NGINX and NGINX Plus.

Creating the Demo Web Application
Create the demo web application by configuring a virtual server in NGINX.

1.	� Create the file /etc/nginx/conf.d/echo.conf with the following content.
It configures a webserver that listens on localhost port 8085 and returns
status code 200 and a message containing the requested URI:

server {
	 listen localhost:8085;

	 location / {
		 default_type text/plain;
		 return 200 "Thank you for requesting ${request_uri}\n";
	 }
}

12ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 2 – Installing ModSecurity

2.	 Test the application by reloading the NGINX configuration and making
a request:

$ sudo nginx -s reload
$ curl -D - http://localhost:8085 HTTP/1.1 200 OK
Server: nginx/1.11.10
Date: Wed, 3 May 2017 08:55:29 GMT Content-Type: text/plain
Content-Length: 27
Connection: keep-alive

Thank you for requesting /

Configuring NGINX as a Reverse Proxy
Configure NGINX as a reverse proxy for the demo application.

1.	 Create the file /etc/nginx/conf.d/proxy.conf with the following content.
It configures a virtual server that listens on port 80 and proxies all requests
to the demo application:

server {
	 listen 80;

	 location / {
		 proxy_pass http://localhost:8085;
		 proxy_set_header Host $host;
	 }
}

Note: If any other virtual servers (server blocks) in your NGINX configuration listen on
port 80, you need to disable them for the reverse proxy to work correctly. For example, the
/etc/nginx/conf.d/default.conf file provided in the nginx package includes such a server block.
Comment out or remove the server block, but do not remove or rename the default.conf file
itself – if the file is missing during an upgrade, it is automatically restored, which can break the
reverse‑proxy configuration.

http://nginx.org/en/docs/http/ngx_http_core_module.html?&_ga=2.13409522.451997568.1512262028-848204253.1505747885#server

13ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 2 – Installing ModSecurity

2.	 Reload the NGINX configuration:

$ sudo nginx -s reload

3.	 Verify that a request succeeds, which confirms that the proxy is
working correctly:

$ curl -D - http://localhost
HTTP/1.1 200 OK
Server: nginx/1.11.10
Date: Wed, 3 May 2017 08:58:02 GMT
Content-Type: text/plain
Content-Length: 27
Connection: keep-alive

Thank you for requesting /

Protecting the Demo Web Application
Configure ModSecurity 3.0 to protect the demo web application by blocking
certain requests.

1.	 Create the folder /etc/nginx/modsec for storing ModSecurity configuration:

$ sudo mkdir /etc/nginx/modsec

2.	 Download the file of recommended ModSecurity configuration
from the v3/master branch of the ModSecurity GitHub repo and
name it modsecurity.conf:

$ cd /etc/nginx/modsec
$ sudo wget https://raw.githubusercontent.com/SpiderLabs/
ModSecurity/v3/master/modsecurity.conf-recommended
$ sudo mv modsecurity.conf-recommended modsecurity.conf

14ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 2 – Installing ModSecurity

3.	 Enable execution of rules by commenting out the existing SecRuleEngine
directive in modsecurity.conf and adding the indicated directive. We will
define the sample rule in the next step:

SecRuleEngine DetectionOnly
SecRuleEngine On

For more information about the SecRuleEngine directive, see:
github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#SecRuleEngine.

4.	 Create the main ModSecurity 3.0 configuration file,
/etc/nginx/modsec/main.conf, and define a rule in it:

Include the recommended configuration
Include /etc/nginx/modsec/modsecurity.conf

A test rule
SecRule ARGS:testparam "@contains test" "id:1234,deny,log,status:403"

	 •	� Include – Includes the recommended configuration from the
modsecurity.conf file.

	 •	� SecRule – Creates a rule that protects the application by
blocking requests and returning status code 403 when the
testparam parameter in the query string contains the string test.

For more information about the SecRule directive, see:
github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#SecRule".

http://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#SecRuleEngine
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#secrule
http://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#SecRule"

15ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 2 – Installing ModSecurity

5.	 Change the reverse proxy configuration file
(/etc/nginx/conf.d/proxy.conf) to enable the ModSecurity 3.0:

server {
	 listen 80;

	 modsecurity on;
	 modsecurity_rules_file /etc/nginx/modsec/main.conf;

	 location / {
		 proxy_pass http://localhost:8085;
		 proxy_set_header Host $host;
	 }
}

	 •	� modsecurity on – Enables the ModSecurity 3.0.

	 •	� modsecurity_rules_file – Specifies the location of the ModSecurity 3.0
configuration file.

Documentation for modsecurity* directives in the NGINX configuration file is
available on GitHub at: github.com/SpiderLabs/ModSecurity-nginx#usage.

6.	 Reload the NGINX configuration:

$ sudo nginx -s reload

http://available on GitHub at github.com/SpiderLabs/ModSecurity-nginx#usage"

16ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 2 – Installing ModSecurity

7.	 Verify that the rule configured in Step 4 works correctly, by making a
request that includes the string test in the value of the query string
testparam parameter:

$ curl -D - http://localhost/foo?testparam=thisisatestofmodsecurity
HTTP/1.1 403 Forbidden
Server: nginx/1.11.10
Date: Wed, 3 May 2017 09:00:48 GMT
Content-Type: text/html
Content-Length: 170
Connection: keep-alive

<html>
<head><title>403 Forbidden</title></head>
<body bgcolor="white">
<center><h1>403 Forbidden</h1></center>
<hr/><center>nginx/1.11.10</center>
</body>
</html>

The request returns status code 403, confirming that the WAF is enabled and
executing the rule.

Conclusion

In this section, we installed ModSecurity 3.0 for NGINX and NGINX Plus and
created a simple rule for quick testing.

In the next chapter we will cover how to install the OWASP Core Rule Set (CRS).

17ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 3 – Installing the OWASP Core Rule Set

“�The OWASP ModSecurity Core Rule Set is

the standard rule set used with ModSecurity.

It is the first line of defense against attacks

as those described by the OWASP Top Ten.”

–Dr. Christian Folini, co-lead, OWASP Core Rule Set project

After installing the ModSecurity 3.0 software, the next step is to install one or
more ModSecurity rule sets. The rules define the attack patterns and determine
what actions ModSecurity takes for each one.

We strongly recommend that all users install the base rule set, the OWASP
Core Rule Set (CRS). The CRS is community-maintained and contains rules
to help stop common attack vectors, including SQL injection (SQLi), cross-
site scripting (XSS), and many others. It also has rules to integrate with
Project Honeypot (Chapter 5) as well as rules to detect bots and scanners.

On top of the CRS you can install the Trustwave SpiderLabs commercial
rules, which provide additional protections. Chapter 4 describes the Trustwave
SpiderLabs commercial rules in detail.

This chapter covers installation of the OWASP CRS.

 Installing the
 OWASP Core
 Rule Set3

18ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 3 – Installing the OWASP Core Rule Set

Overview of the OWASP Core Rule Set

The original OWASP Core Rule Set was
released in 2006 by Ofer Shezaf. It is
currently licensed under the Apache
Software License version 2 (ASLv2) and
 is community-maintained by a team of 10
developers co-led by Dr. Christian Folini.

Version 3.0 of the CRS, commonly known
as CRS3, was released in November
2016. It is most notable for reducing the
number of false positives in a default
installation by over 90%.

The CRS is a generic blacklist rule set
consisting of snippets that are known to
be used in attacks. The snippets are
combined together to form the rule set.

We recommend you use version 3 of the CRS with NGINX

CRS File and Directory Structure
The CRS is hosted in GitHub at: github.com/SpiderLabs/owasp-modsecurity-crs
and defaults to version 3 of the CRS. When you visit the GitHub repository, the
key things to look for are:

•	crs-setup.conf.example – The main configuration file for the CRS. It defines
the anomaly scoring thresholds, paranoia levels, and other key ModSecurity
configurables. Later sections in this chapter show how to modify CRS
configuration with this file.

•	rules/ – Directory containing the rules organized into different files, each
of which has a number assigned to it:

-- 90x files – Exclusions to remedy false positives.

-- 91x files – Rules to detect malicious clients, such as scanners and bots.

Movie poster commemorating the
release of version 3.0 of the CRS

http://www.apache.org/licenses/LICENSE-2.0.txt
http://www.apache.org/licenses/LICENSE-2.0.txt
https://github.com/SpiderLabs/owasp-modsecurity-crs

19ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 3 – Installing the OWASP Core Rule Set

-- 92x files – Rules to detect protocol violations.

-- 93x and 94x files – Rules to detect application attacks such as SQLi and
Remote Command Execution.

-- 95x files – Rules to detect outbound data leakage. These are not supported
by NGINX or NGINX Plus.

-- .data files – Data used by the rules. For example crawlers-user-
agents.data contains a list of User-Agent values used by scanners.
This file is used by rule REQUEST-913-SCANNER-DETECTION.conf to identify
scanners and bots.

Anomaly Scoring
The CRS uses a configurable anomaly-scoring model. Each rule that fires
increases the anomaly score and if the score exceeds the configured anomaly
threshold then the transaction is blocked. The anomaly levels are as follows:

•	 Critical – Anomaly score of 5. Indicates a likely application attack. Mostly
generated by 93x and 94x files.

•	 Error – Anomaly score of 4. Indicates likely data leakage. Generated mostly
by 95x files. 95x files are not supported with NGINX or NGINX Plus.

•	 Warning – Anomaly score of 3. Indicates likely malicious client. Generated
mostly by 91x files.

•	 Notice – Anomaly score of 2. Indicates likely protocol violations. Generated
mostly by 92x files.

By default the CRS blocks all inbound traffic with an anomaly score of 5 or
higher. This means any critical rule that fires causes the transaction to be
dropped. Three or more Notice-level violations also lead to the transaction
being blocked.

The default settings are suitable for most application and generally lead
to few false positives. Please see section Tuning to Minimize False Positives
in Chapter 7 for information on tuning the anomaly threshold to reduce
false positives.

20ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 3 – Installing the OWASP Core Rule Set

Pre-installation: Running the Nikto Scanning Tool

We begin by sending attack traffic to the demo web application created in
Installing the NGINX Plus with ModSecurity WAF. Many attackers run vulnerability
scanners to identify security vulnerabilities in a target website or app. Once they
learn what vulnerabilities are present, they can launch the appropriate attacks.

We’re using the Nikto scanning tool to generate malicious requests, including
probes for the presence of files known to be vulnerable, cross‑site scripting
(XSS), and other types of attack. The tool also reports which requests passed
through to the application, revealing potential vulnerabilities in the application.

Run the following commands to get the Nikto code and run it against the web
application. The 324 items in the output are potential vulnerabilities, revealed
by requests that passed through to the application.

$ git clone https://github.com/sullo/nikto
Cloning into 'nikto'...
$ cd nikto
$ perl program/nikto.pl -h localhost
- Nikto v2.1.6
...
+ 7531 requests: 0 error(s) and 324 item(s) reported on remote host

Next we enable the CRS, and then test how it blocks most of Nikto’s requests
and so decreases the number of items reported.

Installing and Enabling the OWASP CRS

To enable the OWASP CRS, perform the following steps:

1.	 Download the latest OWASP CRS from GitHub and extract the rules
into /usr/local or another location of your choice.

$ wget https://github.com/SpiderLabs/owasp-modsecurity-crs/archive/
v3.0.0.tar.gz
$ tar -xzvf v3.0.0.tar.gz
$ sudo mv owasp-modsecurity-crs-3.0.0 /usr/local

https://docs.nginx.com/nginx-waf/admin-guide/nginx-plus-modsecurity-waf-installation-logging/
https://github.com/sullo/nikto

21ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 3 – Installing the OWASP Core Rule Set

2.	 Create the crs‑setup.conf file as a copy of crs‑setup.conf.example.

$ cd /usr/local/owasp-modsecurity-crs-3.0.0
$ sudo cp crs-setup.conf.example crs-setup.conf

3.	 Add Include directives in the main ModSecurity configuration file
(/etc/nginx/modsec/main.conf, created in Step 4 of Protecting the Demo
Web Application) to read in the CRS configuration and rules. Comment out
any other rules that might already exist in the file, such as the sample
SecRule directive created in that section.

Include the recommended configuration
Include /etc/nginx/modsec/modsecurity.conf
OWASP CRS v3 rules
Include /usr/local/owasp-modsecurity-crs-3.0.0/crs-setup.conf
Include /usr/local/owasp-modsecurity-crs-3.0.0/rules/*.conf

4.	 Reload the NGINX Plus configuration.

$ sudo nginx -s reload

Testing the CRS

In this section, we explore how rules in the CRS block Nikto’s requests based
on particular characteristics of the requests. Our ultimate goal is to show that
the CRS blocks all of Nikto’s requests, so that none of the vulnerabilities Nikto
detects are left open for attackers to exploit.

https://docs.nginx.com/nginx-waf/admin-guide/nginx-plus-modsecurity-waf-installation-logging/
https://docs.nginx.com/nginx-waf/admin-guide/nginx-plus-modsecurity-waf-installation-logging/

22ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 3 – Installing the OWASP Core Rule Set

Disabling Blocking of Requests Based on the User‑Agent Header
The CRS recognizes requests from scanners, including Nikto, by inspecting
the User‑Agent header. As shown in the following output, the CRS comes
preconfigured to block requests that have the default User‑Agent header for
Nikto (Nikto).

$ curl -H "User-Agent: Nikto" http://localhost/
<html>
<head><title>403 Forbidden</title></head>
<body bgcolor="white">
<center><h1>403 Forbidden</h1></center>
<hr><center>nginx/1.11.10</center>
</body>
</html>

(If you want to see exactly how the CRS ranks and blocks requests based on
the User‑Agent header and related characteristics of requests from scanners,
you can correlate the rule ID numbers found in the NGINX error log with the
rules in the CRS’s Scanner Detection rule set (REQUEST-913-SCANNER-
DETECTION.conf).)

During this testing phase we don’t want to block all requests from Nikto, because
we’re using them to detect possible vulnerabilities in our demo app. To stop the
CRS from blocking requests just because their User‑Agent header is Nikto,
we reconfigure Nikto not to include Nikto and related values in the header.
Comment out the current setting for USERAGENT in program/nikto.conf and
replace it with the value shown:

USERAGENT=Mozilla/5.00 (Nikto/@VERSION) (Evasions:@EVASIONS)
(Test:@TESTID)
USERAGENT=Mozilla/5.00

23ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 3 – Installing the OWASP Core Rule Set

Eliminating Requests for Vulnerable Files
When we rerun Nikto against the web application, we see that only 116 of
Nikto’s requests get through to the application server, compared to 324 when
the CRS wasn’t enabled. This indicates that the CRS is protecting our application
from a large proportion of the vulnerabilities exposed by Nikto’s requests.

$ perl program/nikto.pl -h localhost
...
+ 7531 requests: 0 error(s) and 116 item(s) reported on remote host

The output from Nikto is very long and so far we have been truncating it to
show just the final line, where the number of items is reported. When we look
at the output more closely, we see that many of the remaining 116 items refer
to a vulnerable file in the application, as in this example:

$ perl program/nikto.pl -h localhost
...
+ /site.tar: Potentially interesting archive/cert file found.
...
+ 7531 requests: 0 error(s) and 116 item(s) reported on remote host

Recall that in Installing the NGINX Plus with ModSecurity WAF, we configured
our demo application to return status code 200 for every request, without
actually ever delivering a file. Nikto is interpreting these 200 status codes to
mean that the file it is requesting actually exists, which in the context of our
application is a false positive.

https://docs.nginx.com/nginx-waf/admin-guide/nginx-plus-modsecurity-waf-installation-logging/

24ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 3 – Installing the OWASP Core Rule Set

Now we eliminate such requests so we can better see where actual vulnerab
ilities might exist. Disable the requests by adding ‑sitefiles in program/
nikto.conf as shown:

Default plug-in macros
Remove plug-ins designed to be run standalone
@@EXTRAS=dictionary;siebel;embedded
@@DEFAULT=@@ALL;-@@EXTRAS;tests(report:500);-sitefiles

Blocking Requests with XSS Attempts
When we rerun Nikto again, it reports only 26 items:

$ perl program/nikto.pl -h localhost
- Nikto v2.1.6
...
+ 7435 requests: 0 error(s) and 26 item(s) reported on remote host

Most of the 26 items arise because the OWASP CRS is not currently configured
to block requests that contain XSS attempts in the request URL, such as

<script>alert('Vulnerable')</script>

To block requests with XSS attempts, edit rules 941160 and 941320 in the CRS’s
XSS Application Attack rule set (REQUEST-941-APPLICATION-ATTACK-XSS.conf)
by adding REQUEST_URI at the start of the variables list for each rule:

SecRule REQUEST_URI|REQUEST_COOKIES|!REQUEST_COOKIES:/__utm/ ...

25ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 3 – Installing the OWASP Core Rule Set

Reload the NGINX Plus configuration to read in the revised rule set:

$ sudo nginx -s reload

When we rerun Nikto, it reports only four items, and they are false positives for
our application.

$ perl program/nikto.pl -h localhost
+ The anti-clickjacking X-Frame-Options header is not present.
+ �The X-XSS-Protection header is not defined. This header can

hint to the user agent to protect against some forms of XSS
+ �The X-Content-Type-Options header is not set. This could allow

the user agent to render the content of the site in a
different fashion to the MIME type

+ �No CGI Directories found (use '-C all' to force check all
possible dirs)

+ �/smg_Smxcfg30.exe?vcc=3560121183d3: This may be a Trend Micro
Officescan 'backdoor'.

+ 7435 requests: 0 error(s) and 4 item(s) reported on remote host

Limitations

Inspecting the response body is not supported, so rules that do so have
no effect.

Conclusion

We used the OWASP ModSecurity Core Rule Set (CRS) to protect our web
application against a wide range of generic attacks and saw how the CRS
blocks malicious requests generated by the Nikto scanning tool.

For information about another supported ModSecurity rule set, see Chapter 4:
Installing the Trustwave SpiderLabs Commercial Rule Set.

26ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 4 – Installing the TrustWave SpiderLabs Commercial Rule Set

 Installing the
 Trustwave SpiderLabs
 Commercial Rule Set4

“�Break the rules. Not the law,

but break the rules.”

–Arnold Schwarzenegger

The Trustwave SpiderLabs Commercial Rule Set provides additional
protections beyond the OWASP CRS, such as application specific rule sets
for WordPress, Joomla, SharePoint, and others. Learn more about the
Trustwave SpiderLabs Commercial Rule Set at: trustwave.com/Products/
Application-Security/ModSecurity-Rules-and-Support.

This chapter covers installation of the Trustwave SpiderLabs Commercial
Rule Set.

Overview

The ModSecurity® Rules from Trustwave SpiderLabs® complement the
Open Web Application Security Project Core Rule Set (OWASP CRS) with
protection against specific attacks of multiple categories – including SQL
injection, cross‑site scripting (XSS), local and remote file includes (LFI and
RFI) – for many common applications (ASP.NET, Joomla, WordPress, and many
others). Additionally, the Trustwave SpiderLabs Rules provide IP reputation
along with other capabilities, and are updated daily.

This chapter builds on the basic configuration in Installing ModSecurity,
showing how to configure the Trustwave SpiderLabs Rules to protect the
demo web application created there.

http://trustwave.com/Products/Application-Security/ModSecurity-Rules-and-Support
http://trustwave.com/Products/Application-Security/ModSecurity-Rules-and-Support
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project

27ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 4 – Installing the TrustWave SpiderLabs Commercial Rule Set

Prerequisites

You must purchase the Trustwave SpiderLabs Rules directly from Trustwave.

As noted above, this chapter builds on Installing ModSecurity and assumes
you have following the instructions there to configure the demo application
and NGINX as a reverse proxy.

Configuring the Trustwave SpiderLabs Rules

Purchasing the Trustwave SpiderLabs Rules gives you access to the
ModSecurity Dashboard, which is a web portal where you can customize the
Trustwave SpiderLabs Rules on individual instances of NGINX with the
ModSecurity WAF (and other ModSecurity installations). The Dashboard
simplifies configuration compared to the OWASP CRS, in two ways:

•	 You don’t need to download rules onto individual NGINX instances, because
the ModSecurity 3.0 dynamic module downloads them automatically when
the SecRemoteRules directive is included in the ModSecurity configuration
(see Step 3 in the next section).

•	 You enable and disable rules – a significant part of the configuration
process – with a GUI on the Dashboard instead of in ModSecurity
configuration files.

To configure the Trustwave SpiderLabs Rules for the demo application, first
create a profile (or use the default one) that includes selected rules for protecting
the application. Then modify the local ModSecurity configuration to make the
ModSecurity dynamic module download and apply the rules. The instructions
use the Configuration Wizard on the Dashboard for creating a profile.

Detailed instructions for using the Dashboard are not provided here. For more
information, log in to the ModSecurity Dashboard at: dashboard.modsecurity.org.

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Secremoterules
http://dashboard.modsecurity.org

28ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 4 – Installing the TrustWave SpiderLabs Commercial Rule Set

Using the Configuration Wizard
To configure the Trustwave SpiderLabs Rules for the demo application,
perform the following steps:

1.	 Log in to the ModSecurity Dashboard and start the Configuration Wizard.
(dashboard.modsecurity.org)

2.	 Create a profile, enabling rules that are relevant for your application. None of
the existing rules actually apply to our demo application, but for the purposes
of this step select the WordPress‑related rules. You can also enable additional
options, such as IP reputation.

3.	 At the Configure your server step, the Wizard presents the SecRemoteRules
directive that must be added to the ModSecurity configuration, similar to
the line below:

SecRemoteRules license‑key https://url

Here, the SecRemoteRules directive configures ModSecurity to download
rules from the remote server, represented by the url, using the provided
license‑key.

The Wizard does not provide an interface for adding the directive, so you need
to edit /etc/nginx/modsec/main.conf manually and add the SecRemoteRules
directive presented by the Wizard (we created the file in Step 4 of Protecting
the Demo Web Application). Comment out any other rules that might already
exist in the file, such as the SecRule directive from that section:

Include the recommended configuration
Include "/etc/nginx/modsec/modsecurity.conf"

SecRemoteRules license‑key https://url

http://dashboard.modsecurity.org
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#secremoterules
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#secremoterules
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#secremoterules
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#secrule

29ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 4 – Installing the TrustWave SpiderLabs Commercial Rule Set

4.	 By default, the Trustwave SpiderLabs Rules only detect malicious requests
and don’t block them. To block the requests, add the following lines to
/etc/nginx/modsec/main.conf, below the SecRemoteRules directive you
added in the previous step:

SecDefaultAction "phase:2,log,auditlog,deny,status:403"
SecDefaultAction "phase:1,log,auditlog,deny,status:403"

The SecDefaultAction directive defines the default list of actions for the rules,
with the deny action blocking malicious requests and returning status code 403.

5.	 Reload the NGINX configuration:

$ sudo nginx -s reload

Reloading takes time as the rules are being downloaded from the remote server.

6.	 Once the Wizard reports that NGINX downloaded the rules, you can close
the wizard and start testing the rules.

Testing the Rules
In Installing the OWASP Core Rule Set, we use the Nikto scanning tool to test
how the CRS blocks malicious requests. However, Trustwave SpiderLabs rule
are specific rules that cannot detect the generic attacks sent by Nikto.

The Dashboard provides a description of each ModSecurity rule, which you
can use to construct and send a malicious request to NGINX to test how the
rule behaves.

Caveats for the SecRemoteRules Directive

Currently, the only way to download the Trustwave SpiderLabs Rules
is with the SecRemoteRules directive. While the directive simplifies the
process of getting the rules onto an instance of ModSecurity 3.0, the
following caveats apply:

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#SecDefaultAction

30ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 4 – Installing the TrustWave SpiderLabs Commercial Rule Set

•	 Every time you reload the NGINX configuration or restart NGINX, the rules are
freshly downloaded from a remote server. The SecRemoteRulesFailAction
directive controls what happens when the download fails – for example, when
connectivity to the remote server is lost. The directive supports two values:
Abort, which forces the reload or restart of NGINX to fail, and Warn, which
lets NGINX reload or restart successfully but with no remote rules enabled.
The SecRemoteRulesFailAction directive must appear above SecRemoteRules
directives in a ModSecurity configuration file.

•	 Downloading the rules takes some time, which delays the reload or
restart operation.

•	 Each SecRemoteRules definition leads to a separate download, further
increasing the reload/restart time. To avoid that, try to minimize the
number of SecRemoteRules definitions. Note that even if you define
SecRemoteRules only in one file (as in the /etc/nginx/modsec/main.conf
file modified in Step 3 above), each time you include this file into NGINX
configuration using the modsecurity_rules_file directive (as in the
/etc/nginx/conf.d/proxy.conf file created in Configuring NGINX as
a Reverse Proxy), ModSecurity treats it as a separate definition.

•	 Merging rules from different contexts (http, server, location) also adds
time to the reload/restart operation and consumes a lot of CPU, especially
for a huge rule set such as the Trustwave SpiderLabs Rules. In addition to
minimizing the number of SecRemoteRules definitions, try to include all rule
definitions in a single context.

The Trustwave SpiderLabs rule set contains more than 16,000 rules for
protecting various applications. The more rules there are, the worse the
WAF performs, so it’s crucial that you enable only rules that are relevant
for your application.

Limitations

Inspecting the response body is not supported, so rules that do so have
no effect.

Conclusion

In this chapter, we configured ModSecurity Rules from Trustwave SpiderLabs to
protect our application against WordPress‑related attacks. We also reviewed
caveats for the SecRemoteRules directive.

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#secremoterulesfailaction
https://github.com/SpiderLabs/ModSecurity-nginx#usage

31ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 5 – Enabling Project Honeypot

“�It takes 20 years to build a reputation and

five minutes to ruin it. If you think about that,

you’ ll do things differently.”
–Warren Buffett

To help fight crime, the FBI maintains a public Ten Most Wanted list of the
most dangerous criminals out there. Anyone who sees someone on the list
will know to call the police, making it more difficult for these criminals to
commit more crimes.

In the world of technology, there’s a similar concept called Project Honeypot.
Project Honeypot maintains a list of known malicious IP addresses, available
free to the public. ModSecurity integrates with Project Honeypot and can
automatically block IP addresses on the Project Honeypot list. This process is
known as IP reputation.

In this chapter, we cover how to configure ModSecurity 3.0 to integrate with
Project Honeypot, for both NGINX and NGINX Plus.

How Project Honeypot Works

Project Honeypot is a community‑driven online database of IP addresses that
are suspected spammers or bots. Each IP address is assigned a threat score
between 0 and 255; the higher the number, the more likely the IP address is to
be malicious.

The Project Honeypot database is powered by a network of volunteers who
set up “honeypots”. A honeypot, in this context, is a fake page on a site that
shows up when a bot scans a site, but is invisible to regular people accessing

 Enabling
 Project Honeypot5

https://www.fbi.gov/wanted/topten
https://www.projecthoneypot.org/

32ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 5 – Enabling Project Honeypot

the site with a web browser. When the scanner follows the honeypot link
and attempts to interact with the page – harvesting, for example, an embedded
honeypot email address – the IP address is added to the database.

Project Honeypot lookups are done in real time when an HTTP request is
received, so enabling this functionality it likely to worsen performance. The
results are cached, however, to minimize the performance impact. Before
integrating Project Honeypot into a production environment, please be sure
to test the potential performance impact it will have on your applications.

For more details on how Project Honeypot works, please see:
projecthoneypot.org/services_overview.php

Set Up Your Honeypot

To start using Project Honeypot, set up a honeypot on your site using the
script provided by Project Honeypot:

1.	 Sign up a for a free Project Honeypot account.
(projecthoneypot.org/create_account.php)

2.	 Set up your honeypot – Project Honeypot offers the honeypot
script in PHP, Python, ASP, and a few other languages.
(projecthoneypot.org/manage_honey_pots.php)

3.	 Download the honeypot script.

In this scenario, we use PHP for the scripting language. If your preferred
language is not supported by Project Honeypot, PHP is a good choice,
because it’s very easy to configure NGINX and NGINX Plus to run PHP scripts
using PHP‑FPM.

There are plenty of tutorials online on how to install PHP‑FPM. For Ubuntu 16.04
and later, you can use these commands:

$ apt-get update
$ apt-get -y install php7.0-fpm

Project Honeypot lookups are done in real time when an HTTP request is received, so there will likely be a performance impact for enabling this functionality. The results are cached, however, to minimize the performance impact. Before enabling Project Honeypot integration in a production environment, please be sure to test the potential performance impact it will have on your applications.

For more details on how Project Honeypot works, please see: projecthoneypot.org/services_overview.php

http://projecthoneypot.org/create_account.php
http://www.projecthoneypot.org/manage_honey_pots.php
http://(projecthoneypot.org/manage_honey_pots.php)

33ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 5 – Enabling Project Honeypot

You can then configure the Project Honeypot PHP script by adding this
server block:

server {
	 server_name www.example.com;

	 location ~ \.php$ {
		 modsecurity off;
		 root /code;
		 try_files $uri =404;
		 fastcgi_split_path_info ^(.+\.php)(/.+)$;
		 fastcgi_pass localhost:9000;
		 include fastcgi_params;
		� fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_

script_name;
		 fastcgi_param PATH_INFO $fastcgi_path_info;
	 }
}

Notes:

•	 In the server_name directive, for www.example.com substitute the domain name
you registered with Project Honeypot.

•	 ModSecurity must be disabled on the honeypot script for it to function properly.

•	 In the root directive, for /code, substitute the directory where you placed the
honeypot script.

Once the script is installed, access it in a web browser and click the activation
link to activate the honeypot.

http://nginx.org/en/docs/http/ngx_http_core_module.html?&_ga=2.188422056.1059289398.1512412598-848204253.1505747885#server_name
http://nginx.org/en/docs/http/ngx_http_core_module.html?&_ga=2.21058619.1059289398.1512412598-848204253.1505747885#root

34ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 5 – Enabling Project Honeypot

Add the Honeypot Link to All Pages

The next step is to configure NGINX or NGINX Plus to add the honeypot link to
all pages.

To catch bots and scanners, insert a link to the honeypot script on every page.
The link is invisible to regular people using a web browser but visible to bots and
scanners. Here, we use the sub_filter directive to add the link to the bottom
of each page:

location / {
	 proxy_set_header Host $host;
	 proxy_pass http://my_upstream;

	 sub_filter	'</html>'
				� '

<!-- hightest --></html>';
}

In this example, the name of our PHP honeypot file is weddingobject.php.
The sub_filter directive looks for the HTML end‑of‑page tag, </html>, and
inserts the invisible link there.

Enable IP Reputation in the Core Rule Set

Now that our honeypot is set up, we can configure ModSecurity to query
Project Honeypot on all HTTP requests.

1.	 Request a Project Honeypot http:BL access key.
(projecthoneypot.org/httpbl_configure.php)

http://nginx.org/en/docs/http/ngx_http_sub_module.html?&_ga=2.33772321.1059289398.1512412598-848204253.1505747885#sub_filter
http://www.projecthoneypot.org/httpbl_configure.php

35ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 5 – Enabling Project Honeypot

2.	 In the file /usr/local/owasp-modsecurity-crs-3.0.0/crs-setup.conf,
which you installed according to the Installing the OWASP Core Rule Set,
locate the SecHttpBlKey block:

SecHttpBlKey my_api_key
SecAction "id:900500,\
	 phase:1,\
	 nolog,\
	 pass,\
	 t:none,\
	 :tx.block_search_ip=0,\
	 setvar:tx.block_suspicious_ip=1,\
	 setvar:tx.block_harvester_ip=1,\
	 setvar:tx.block_spammer_ip=1"

Note that block_search_ip is disabled in the above example, as it’s unlikely
that you want to block search engine crawlers.

3.	 Reload the configuration for the changes to take effect:

$ nginx -t && nginx -s reload

At this point, Project Honeypot is fully enabled and ModSecurity queries
Project Honeypot on all HTTP requests. To minimize the performance impact,
only the first request from a given IP address is sent to Project Honeypot, and
the results of the query are cached.

Verify It Works

The Project Honeypot queries are based off the client source IP address. It’s not
easy to spoof a source IP address, so a good way to test that the functionality
is working is by adding this custom rule to /etc/nginx/modsec/main.conf.

36ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 5 – Enabling Project Honeypot

It sends the value of the IP address argument, passed in as part of the request,
to Project Honeypot:

SecRule ARGS:IP "@rbl dnsbl.httpbl.org" "phase:1,id:171,t:none,deny,
nolog,auditlog,msg:'RBL Match for SPAM Source'

Reload the configuration for the rule to take effect:

$ nginx -t && nginx -s reload

Then run the following curl command to test the rule with an IP address from
Project Honeypot’s list of known bad IP addresses (projecthoneypot.org/
list_of_ips.php) (substitute that address for the sample address used here,
203.0.113.20, which is a standard address reserved for documentation). If the
rule works correctly, the request is blocked with status code 403:

$ curl -i -s -k -X $'GET' 'http://localhost/?IP=203.0.113.20'
HTTP/1.1 403 Forbidden
Server: nginx/1.13.4
Date: Wed, 04 Oct 2017 21:29:17 GMT
Content-Type: text/html
Transfer-Encoding: chunked
Connection: keep-alive

Conclusion

In this chapter, we covered the steps for configuring ModSecurity 3.0 to work
with Project Honeypot. Project Honeypot is a very useful tool for automatically
blocking known bad IP addresses. It’s free and is powered by a community of
users setting up honeypots on their own sites.

http://www.projecthoneypot.org/list_of_ips.php
http://www.projecthoneypot.org/list_of_ips.php

37ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 6 – Logging

“�ModSecurity will help you sleep better at

night because, above all, it solves the visibility

problem: it lets you see your web traffic.”

–Ivan Ristić, creator of ModSecurity

When something is not working as you expect it to, logs are always the first
place to look. Good logs can provide valuable insights to help you trouble
shoot the problems you’re facing. One of the reasons Ivan Ristić originally
created ModSecurity is that he was frustrated with the lack of visibility in the
tools he was using. It’s no surprise, then, that ModSecurity has extensive
logging and debugging capabilities.

ModSecurity has two types of logs:

•	 An audit log. For every transaction that’s blocked, ModSecurity provides
detailed logs about the transaction and why it was blocked.

•	 A debug log. When turned on, this log keeps extensive information about
everything that ModSecurity does.

The audit log is useful for learning not just why an individual attack was
blocked, but for finding out more about overall attack patterns. You might be
surprised by how much bot and scanner traffic you get just by exposing
ports 80 and/or 443 to the Internet.

In this chapter, we’ll describe the basics of logging and debugging
with ModSecurity.

 Logging6

38ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 6 – Logging

Audit Log

The main log in ModSecurity is the audit log, which logs all attacks, including
potential attacks, that occur. If you’ve followed our installation instructions in
Installing ModSecurity, then by default, ModSecurity will log all transactions
that triggered a warning or error, as well as all transactions that resulted in 5xx
and 4xx responses, except for 404. (For an Ubuntu 16.04 system only, the
audit log is in /var/log/modsec_audit.log.)

The ModSecurity audit log is partitioned into sections. This makes it easier to
scan the log and find the information you’re looking for. The table below
outlines what each section contains:

Section Description
A Audit log header (mandatory)

B Request headers

C Request body

D Reserved

E Response body

F Response headers

G Reserved

H Audit log trailer, which contains additional data

I Compact request body alternative (to part C), which excludes files

J Information on uploaded files

K Contains a list of all rules that matched for the transaction

Z Final boundary (mandatory)

Each transaction that triggers an audit log entry will have any or all of the
above sections logged. You can configure which sections are logged.

39ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 6 – Logging

Audit Log Example
A sample ModSecurity audit log entry might look like this:

---ICmPEb5c---A--
[04/Oct/2017:21:45:15 +0000] 150715351558.929952 141.212.122.16 64384
141.212.122.16 80
---ICmPEb5c---B--
GET / HTTP/1.1
Host: 54.183.57.254
User-Agent: Mozilla/5.0 zgrab/0.x
Accept-Encoding: gzip

---ICmPEb5c---D--

---ICmPEb5c---F--
HTTP/1.1 200
Server: nginx/1.13.4
Date: Wed, 04 Oct 2017 21:45:15 GMT
Content-Type: text/html
Connection: keep-alive

---ICmPEb5c---H--
ModSecurity: Warning. Matched "Operator R̀x' with parameter
`̂ [\d.:]+$' against variable R̀EQUEST_HEADERS:Host' (Value:
5̀4.183.57.254') [file "/root/owasp
-v3/rules/REQUEST-920-PROTOCOL-ENFORCEMENT.conf"] [line "733"] [id
"920350"] [rev "2"] [msg "Host header is a numeric IP address"]
[data "54.183.57.254"] [severity "4"] [ver "OWASP_CRS/3.0.0"]
[maturity "9"] [accuracy "9"] [tag "application-multi"] [tag
"language-multi"] [tag "platform-multi"] [tag "attack-protocol"]
[tag "OWASP_CRS/PROTOCOL_VIOLATION/IP_HOST"] [tag "WASCTC/WASC-21"]
[tag "OWASP_TOP_10/A7"] [tag "PCI/6.5.10"] [ref "o0,13v21,13"]
---ICmPEb5c---I--

---ICmPEb5c---J--

---ICmPEb5c---Z--

40ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 6 – Logging

Though it’s not immediately apparent from the table above, the best section
to find information on why a particular request was blocked is section H, not
section K. From the above audit log example, if we scan through section H,
we can see the message "Host header is a numeric IP address", which
indicates someone tried to access our site by IP address rather than by
hostname. This may be indicative of a scanner.

Audit Logging Configuration
If you followed our instructions for installing and configuring ModSecurity, you’ll
find the audit logging configuration in /etc/nginx/modsec/modsecurity.conf.
In that file, you’ll see the following three directives that control what is put into
the audit log:

SecAuditEngine RelevantOnly
SecAuditLogRelevantStatus "̂ (?:5|4(?!04))"
SecAuditLogParts ABIJDEFHZ

where

•	 SecAuditEngine – Controls what should be logged. Options are:

•	Off – Disable the audit log.

•	On – Log all transactions, which can be useful when debugging.

•	RelevantOnly – Log only transactions that have triggered a
warning/error, or have a status code that matches what’s in the
SecAuditLogRelevantStatus directive.

•	SecAuditLogRelevantStatus – If SecAuditEngine is set to RelevantOnly,
then this directive controls what HTTP response status codes should be
logged. It’s regular expression‑based. The above value will log all 5xx and
4xx responses, excluding 404s.

•	SecAuditLogParts – Controls what sections should be included in the
access log. Removing sections you’re not interested in reduces the size of
the audit log and make it easier to scan.

For additional audit‑logging configuration directives, refer to the ModSecurity
wiki at: github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual.

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual

41ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 6 – Logging

Debug Log

When the debug log is turned on, it provides a wealth of information on every
thing ModSecurity does. For troubleshooting issues as to why something is
not working the way you expect it to, the debug log is your go‑to resource.
It’s also great if you’re getting started with ModSecurity and want to observe
why it does things a certain way.

Debug Log Example
The debug log looks like the following. It has a lot of details on the actions
ModSecurity takes for any and all transactions:

[4] �(Rule: 1234) Executing operator "Contains" with param "test"
against ARGS:testparam.

[9] Target value: "test" (Variable: ARGS:testparam)
[9] Matched vars updated.
[4] Running [independent] (non-disruptive) action: log
[9] Saving transaction to logs
[4] Rule returned 1.
[9] (SecDefaultAction) Running action: log
[9] Saving transaction to logs
[9] (SecDefaultAction) Running action: auditlog
[4] �(SecDefaultAction) ignoring action: pass (rule contains a

disruptive action)
[4] Running (non-disruptive) 	action: auditlog
[4] Running (disruptive)	 action: deny

The debug log lists the rule ID number for easy searching. In this example, the
output is from our test rule with ID number 1234.

42ModSecurity 3.0 and NGINX: Quick Start Guide Ch. 6 – Logging

Debug Log Configuration
By default, the debug log is disabled, as it can negatively affect performance.
Just as with audit logging, the debug log is configured in /etc/nginx/modsec/
modsecurity.conf. In that file, there are two configuration directives that are
commented out. To enable debug logging, uncomment them and change
them to the following:

SecDebugLog /var/log/modsec_debug.log
SecDebugLogLevel 9

where

•	 SecDebugLog – Specifies the path to the debug log file.

•	 SecDebugLogLevel – 0–9 indicates how much information to log, with 9 being
the most. If you’re troubleshooting, setting this value to 9 is the most helpful.

Conclusion

In this chapter, we covered how to get started using the extensive logging
capabilities within ModSecurity. ModSecurity has both audit logs, which
contain information about all blocked transactions, and a debug log to further
assist you if you’re having trouble using ModSecurity.

43 Ch. 7 – Implementing ModSecurity in ProductionModSecurity 3.0 and NGINX: Quick Start Guide

“�I don’t always test my code, but

when I do I do it in production.”

–internet meme

By now you’ve installed ModSecurity and have been running it in a non-
production environment. You’ve run it with the debug log enabled and have a
good idea of what is going on behind the scenes. Before deploying ModSecurity
into a production environment, it is important to have thoroughly tested it in a
non-production environment.

In this chapter we provide a checklist of items to step through before fully
deploying ModSecurity into your production environment.

Tuning to Minimize False Positives

False positives are one of the biggest fears with web application firewalls (WAFs)
and lead many people to not use them, or run them in passive monitoring
mode only. By default the OWASP Core Rule Set (CRS) triggers very few, if any,
false positives. The following method for tuning ModSecurity to reduce false
positives is based on recommendations by Dr. Christian Folini, co-lead of the
OWASP CRS project.

The basic idea is to run ModSecurity in blocking mode, increase the anomaly
threshold to a very high value, and then progressively lower it.

1.	 Ensure ModSecurity is in active blocking mode. If you have been following
the instructions in this book, ModSecurity is already in blocking mode. If it
doesn’t already exist, add the following line to modsecurity.conf:

SecRuleEngine On

Implementing
ModSecurity in
Production7

44 Ch. 7 – Implementing ModSecurity in ProductionModSecurity 3.0 and NGINX: Quick Start Guide

2.	 Ensure the audit log is enabled (which it is by default).

3.	 Increase the anomaly threshold to 1000. This is done by uncommenting
this rule in crs-setup.conf and modifying the anomaly thresholds:

SecAction \
	 "�id:900110,\

phase:1,\
nolog,\
pass,\
t:none,\
setvar:tx.inbound_anomaly_score_threshold=1000,\

setvar:tx.outbound_anomaly_score_threshold=1000"

4.	 Monitor the audit log for false positives, and prevent them by adding
SecRemoveRuleByID to main.conf.

SecRemoveRuleByID rule-id

5.	 If you don't see any false positives after running for some time, lower the
anomaly threshold by half and repeat steps 4 and 5. Continue this process
until the anomaly threshold is back to 5, the default value.

Disabling the Audit Log

Audit logging is enabled in the default ModSecurity configuration, but we
recommend disabling it in production environments for two reasons:

1.	 Audit logging negatively affects ModSecurity performance

2.	 The log file can grow large very quickly and exhaust disk space

To disable audit logging, change the value of the SecAuditEngine directive in
modsecurity.conf to off:

SecAuditEngine off

45 Ch. 7 – Implementing ModSecurity in ProductionModSecurity 3.0 and NGINX: Quick Start Guide

The NGINX error log, enabled by default, logs all blocked transactions so you
don't lose information by disabling the ModSecurity audit log. The following
sample entry in the NGINX error log reports a transaction blocked by the
simple rule we configured in Verifying the Installation in Chapter 2.

2017/12/19 14:40:58 [warn] 1205#1205: *12 [client 127.0.0.1]
ModSecurity: Access denied with code 403 (phase 1). Matched
"Operator 'Contains' with parameter 'test' against variable
'ARGS:testparam' (Value: 'thisisatest') [file "/etc/nginx/modsec/
main.conf"] [line "202"] [id "1234"] [rev ""] [msg ""] [data ""]
[severity "0"] [ver ""] [maturity "0"] [accuracy "0"] [hostname
"127.0.0.1"] [uri "/foo"] [unique_id "151369445814.452751"] [ref
"o7,4v19,11"], client: 127.0.0.1, server: , request: "GET /
foo?testparam=thisisatest HTTP/1.1", host: "localhost"

Not Inspecting Static Content

There is little point running ModSecurity rules against requests handled by
a simple static-content virtual server or by a web server with no dynamic
applications. Instead, use the location directive to route request requests
for static and dynamic resources to different servers or filesystem locations.
The following modification of the configuration, presented in Protecting the
Demo Web Application in Chapter 2, separates out static image files so that
ModSecurity doesn't inspect them:

server {
	 listen 80;

	 location / {
		 modsecurity on;
		 modsecurity_rules_file /etc/nginx/modsec/main.conf;
		 proxy_pass http://localhost:8085;
		 proxy_set_header Host $host;
	 }

	 location ~ \.(gif|jpg|png|jpeg|svg)$ {
		 root /data/images;
	 }
}

http://nginx.org/en/docs/http/ngx_http_core_module.html#location

46 Ch. 7 – Implementing ModSecurity in ProductionModSecurity 3.0 and NGINX: Quick Start Guide

Using NGINX for DDoS Mitigation and Rate Limiting

The ModSecurity dynamic module doesn’t currently support the built-in
CRS rule for DDoS mitigation (REQUEST-912-DOS-PROTECTION.conf).
Fortunately, NGINX and NGINX Plus provide built-in rate limiting and DDoS
mitigation themselves. Consider the following configuration, which limits
each unique IP address to 10 requests per second to the root location,
where ModSecurity is enabled.

limit_req_zone $binary_remote_addr zone=mylimit:10m rate=10r/s;

server {
	 listen 80;

	 location / {
		 limit_req zone=mylimit;

		 modsecurity on;
		 modsecurity_rules_file /etc/nginx/modsec/main.conf;
		 proxy_pass http://localhost:8085;
		 proxy_set_header Host $host;
	 }
}

The limit_req_zone directive defines the parameters for rate limiting, while
limit_req enables rate limiting within the context where it appears .

For more information, see Rate Limiting with NGINX and NGINX Plus on our blog.

http://nginx.org/en/docs/http/ngx_http_limit_req_module.html#limit_req_zone
http://nginx.org/en/docs/http/ngx_http_limit_req_module.html#limit_req
https://www.nginx.com/blog/rate-limiting-nginx/

47 Ch. 7 – Implementing ModSecurity in ProductionModSecurity 3.0 and NGINX: Quick Start Guide

Other Production-Readiness Tips

Here are some other tips and tricks to consider as you move to production
with ModSecurity:

•	 Be prepared to scale up or scale out – Monitor CPU utilization by the NGINX
worker processes. If it consistently exceeds 50%, consider scaling up
(enabling more cores and running more NGINX worker processes) or out
(deploying more NGINX servers and load balancing traffic across them).

•	 Select your ModSecurity rules carefully – There is little point applying the
PHP-specific rules to an application that does not use the PHP interpreter.
Similarly, you don’t need to protect an application against SQL injection if
the data is never handled by an SQL server (this includes offline processing).
In other words, do not enable rules needlessly – it increases CPU utilization,
and might affect latency or generate false-positive matches.

•	 Add a caching layer – An alternative to splitting out content as described in
section Not Inspecting Static Content is to add a caching layer in front of
servers running NGINX with ModSecurity. This greatly reduces the need to
split traffic to ensure that static content is not processed by ModSecurity.
ModSecurity inspection runs before the NGINX caching engine. Caching is
a form of content generation, so it’s very late in the request-processing
pipeline with NGINX. This means that you can’t enable caching on a virtual
server because the request inspection will happen before the cache check.

•	 Keep on top of the latest security vulnerabilities – ModSecurity is a great
tool for protecting web applications and can stop a broad range of attacks,
but it is no replacement for proactive monitoring of security vulnerabilities.
There are many great sources online which provide a database of known
vulnerabilities, such as NIST.

Conclusion

In this chapter we discussed enhancements you can make as you deploy
ModSecurity in production. They included tips for improving performance,
reducing false positives, and getting the most out of ModSecurity and NGINX.

https://www.nist.gov

48ModSecurity 3.0 and NGINX: Quick Start Guide Appendix A: Document Revision History

Version Date Description
1.0 2017-12-14 Initial release

1.1 2018-01-12 •	 Page 4: Added mention of NGINX sub_filter directive for
response filtering

•	 Page 6: Fixed typo, “ibpcre++-dev” -> “libpcre++-dev”

•	 Page 11: Fixed indentation issue in code block

1.2 2018-02-15 Page 3, fixed typo libmodesecurity -> libmodsecurity

1.3 2018-05-22 •	 Added new section, “Overview of the Core Rule Set”

•	 Moved previous Appendix A to be Chapter 4

•	 Added new chapter 7, “Implementing ModSecurity
in Production”

1.4 2018-08-08 •	 Changed all smart quotes to regular quotes in code examples

 Appendix A:

 Document Revison History

	 Preface
	Introduction
	How ModSecurity Works
	ModSecurity 3.0’s New Architecture
	Caveats

	 Installing ModSecurity
	NGINX Open Source Installation Instructions
	NGINX Plus Installation Instructions
	Verifying the installation
	Conclusion

	 Installing the OWASP Core Rule Set
	Overview of the OWASP Core Rule Set
	Pre-installation: Running the Nikto Scanning Tool
	Installing and Enabling the OWASP CRS
	Testing the CRS
	Limitations
	Conclusion

	 Installing the TrustWave SpiderLabs Commercial Rule Set
	Prerequisites
	Configuring the Trustwave SpiderLabs Rules
	Caveats for the SecRemoteRules Directive
	Limitations
	Conclusion

	 Enabling Project Honeypot
	1. Set Up Your Honeypot
	2. Add the Honeypot Link to All Pages
	3. Enable IP Reputation in the Core Rule Set
	4. Verify It Works
	Conclusion

	 Logging
	Audit Log
	Debug Log
	Conclusion

	Implementing ModSecurity in Production
	Disabling the Audit Log
	Not Inspecting Static Content
	Using NGINX for DDoS Mitigation and Rate Limiting
	Other Production-Readiness Tips
	Conclusion

	Appendix A: Document Revision History

