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What’s a Function?
● a.php



What’s a First-class Function?
● Where functions are “first-class citizens”
● Functions can be passed as arguments to other functions
● Functions can be assigned to variables
● Functions can be returned as results from other functions
● From the world of functional programming languages
● From the mid-60’s (Lisp/Scheme are early examples)



Anonymous Functions
● Any function that isn’t named



First-class Function
● b.php



Changing Function Behaviour with Flags
● The simplest technique
● Pass a flag to a function to change its behaviour
● c.php



Why Not Pass The Behaviour?
● First-class functions allow us to pass behaviours instead of flags
● Sometimes advantageous to have the logic at the caller
● … or elsewhere
● … rather than in the function
● d.php



What Does This Remind You Of?
● ?



OO (Object Oriented) Programming
● Changing behaviours with code instead of flags smells like
● … OO subclasses and method overriding
● … a bit, at least



Closures
● Wikipedia:
● “a technique for implementing lexically scoped name binding in a 

language with first-class functions”
● Uh...



Closures
● Wikipedia:
● “a record storing a function together with an environment”
● Better!



Without Closures
● What if we want to write a function that when called
● … increments a counter and then outputs its value
● … remembering the counter between calls
● Without OO, we need a global variable
● … in addition to the the global functions
● e.php



With Closures
● Here’s the magic
● f.php



IncClosure Notes
● The counter variable is local to closure-generating function
● It is made accessible inside the closure in php with “use”
● Must be used “by reference” with php’s “&”
● The counter acts like a global in that it survives the scope of the 

function
● But unlike a global it is protected and hidden globally
● Unless accessed via the closure



Multiple Independent Counters
● Each call to the closure generator creates a new environment
● And a new counter
● Completely distinct and separate from any other counters
● g.php



Always Be Terse
● Eliminate the $inc var in the generator
● Return the anonymous function directly
● h.php



More Features
● How about decrementing?
● i.php
● Return two closures
● Both have access to the same “hidden global”



Another Caller Syntax
● How about call via a list
● Only one closure-calling variable
● Could allow access to many closure functions
● j.php



What Does This Remind You Of (Redux)?
● ?



OO Again
● Data encapsulation
● Data protection
● The data and the code become one
● But without the idiosyncrasies and syntax of OO
● One isn’t “better”
● OO does offer more than just this though
● Another tool in your toolbox



From the Horse’s Mouth
● Wikipedia:
● “Constructs such as objects […] can thus be implemented with 

closures.”



OO Similarities
● The list-calling syntax method looks a lot like object syntax:
● object.method()
● $object→method() in scripting languages
● vs
● $object[method]()



What’s It Good For?
● Neat!  But why?
● Often used with callbacks
● Event handlers (js)
● “to hide state” (Wikipedia)
● Closures “delay evaluation”, only “doing” something when they are 

called
● “all of Smalltalk’s standard control structures […] are defined using 

objects whose methods accept closures” (Wikipedia)



And...
● It’s just darn super cool!



Language Support
● Most modern scripting (Perl, PHP, Python...)
● js
● Java: 8 adds lambda expressions
● C is a special case, with only GCC allowing “nested functions”?
● clang
● C++, Objective-C 2.0 “blocks”



References
● https://en.wikipedia.org/wiki/First-class_function
● https://en.wikipedia.org/wiki/Closure_(computer_science)
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