
Programming with Closures
A MUUG Presentation
(c) 2025 Trevor E. Cordes

About Trevor Cordes
● UNIX-head since 1992 (SunOS > AIX > RH > Fedora)
● Fedora, PHP & Perl fan (wanna fight?)
● MUUG Vice-President
● STUG Past-President (defunct Atari ST club)
● Owner, Tecnopolis Enterprises, est. 1999

What’s a Function?
● a.php

What’s a First-class Function?
● Where functions are “first-class citizens”
● Functions can be passed as arguments to other functions
● Functions can be assigned to variables
● Functions can be returned as results from other functions
● From the world of functional programming languages
● From the mid-60’s (Lisp/Scheme are early examples)

Anonymous Functions
● Any function that isn’t named

First-class Function
● b.php

Changing Function Behaviour with Flags
● The simplest technique
● Pass a flag to a function to change its behaviour
● c.php

Why Not Pass The Behaviour?
● First-class functions allow us to pass behaviours instead of flags
● Sometimes advantageous to have the logic at the caller
● … or elsewhere
● … rather than in the function
● d.php

What Does This Remind You Of?
● ?

OO (Object Oriented) Programming
● Changing behaviours with code instead of flags smells like
● … OO subclasses and method overriding
● … a bit, at least

Closures
● Wikipedia:
● “a technique for implementing lexically scoped name binding in a

language with first-class functions”
● Uh...

Closures
● Wikipedia:
● “a record storing a function together with an environment”
● Better!

Without Closures
● What if we want to write a function that when called
● … increments a counter and then outputs its value
● … remembering the counter between calls
● Without OO, we need a global variable
● … in addition to the the global functions
● e.php

With Closures
● Here’s the magic
● f.php

IncClosure Notes
● The counter variable is local to closure-generating function
● It is made accessible inside the closure in php with “use”
● Must be used “by reference” with php’s “&”
● The counter acts like a global in that it survives the scope of the

function
● But unlike a global it is protected and hidden globally
● Unless accessed via the closure

Multiple Independent Counters
● Each call to the closure generator creates a new environment
● And a new counter
● Completely distinct and separate from any other counters
● g.php

Always Be Terse
● Eliminate the $inc var in the generator
● Return the anonymous function directly
● h.php

More Features
● How about decrementing?
● i.php
● Return two closures
● Both have access to the same “hidden global”

Another Caller Syntax
● How about call via a list
● Only one closure-calling variable
● Could allow access to many closure functions
● j.php

What Does This Remind You Of (Redux)?
● ?

OO Again
● Data encapsulation
● Data protection
● The data and the code become one
● But without the idiosyncrasies and syntax of OO
● One isn’t “better”
● OO does offer more than just this though
● Another tool in your toolbox

From the Horse’s Mouth
● Wikipedia:
● “Constructs such as objects […] can thus be implemented with

closures.”

OO Similarities
● The list-calling syntax method looks a lot like object syntax:
● object.method()
● $object→method() in scripting languages
● vs
● $object[method]()

What’s It Good For?
● Neat! But why?
● Often used with callbacks
● Event handlers (js)
● “to hide state” (Wikipedia)
● Closures “delay evaluation”, only “doing” something when they are

called
● “all of Smalltalk’s standard control structures […] are defined using

objects whose methods accept closures” (Wikipedia)

And...
● It’s just darn super cool!

Language Support
● Most modern scripting (Perl, PHP, Python...)
● js
● Java: 8 adds lambda expressions
● C is a special case, with only GCC allowing “nested functions”?
● clang
● C++, Objective-C 2.0 “blocks”

References
● https://en.wikipedia.org/wiki/First-class_function
● https://en.wikipedia.org/wiki/Closure_(computer_science)

https://en.wikipedia.org/wiki/First-class_function
https://en.wikipedia.org/wiki/Closure_(computer_science)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

