
Terraform (feat. Terragrunt)

Presentation by Wyatt Zacharias

2019

Except where otherwise noted this work is licensed under the Creative Commons Attribution-ShareAlike
4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-
sa/4.0/.

What is Terraform

• Terraform is an open source infrastructure as
code tool.

• Maintained by HashiCorp, written in GO.

• Uses HCL (HashiCorp Configuration Language).

• Is platform agnostic, capable deploying to
many different providers.

Infrastructure As Code

• Part of the “DevOps” paradigm of
infrastructure management.

• Treats infrastructure as if it’s application code.

• All infrastructure changes are committed to
revision control (Git, SVN, etc).

• Infrastructure is “self-documenting” as all
details are contained in the source code.

What is Terragrunt

• Terragrunt is a wrapper for the Terraform
executable.

• Fills in functionality gaps of the vanilla
Terraform tool.

• Maintained by Gruntworks, written in GO

• Virtually transparent after initial configuration.

Folder Structure

• Recommended practice from Gruntworks is to
use a two tree folder structure.

• “Live” folder contains all input data and
represents actively deployed state.

• “Modules” folders contains resource
deployment code that will use “Live”
variables.

Providers

• Providers abstract each unique platforms’
functionality into common calls for Terraform
to perform.

• Providers define how API calls to each
platform are made, and what resources can be
managed on each platform.

• Providers are maintained independently of the
Terraform core application.

HCL Syntax

• HCL uses stanzas or blocks to define resources
and their variables.

• Blocks use key value pairs to define input data
for a resource.

• Data types include bool, number, string,
list, map

• Interpolation syntax uses “${…}” to escape
string sequences.

HCL Resource Blocks

• Terraform has four primary blocks that are used.
Each is declared by its type.

• Resource blocks define a resource that will be
created.

• Variable blocks define an input variable for a
module.

• Output blocks define outputs of resource
properties to use by other modules.

• Data blocks define remote data lookups to query
properties of existing resources.

resource “aws_vpc” “my_vpc” {

 cidr_block = var.vpc_cidr_block

}

variable “vpc_cidr_block” {

 type = string

 description = “The VPC CIDR block”

}

output “my_vpc_arn” {

 value = aws_vpc.my_vpc.arn

}

data “terraform_remote_state” “vpc_state”

 backend = “s3”

}

