
MUUGLines
The Manitoba UNIX User Group Newsletter

Volume 34 No. 8, April 2022 Editor: Trevor Cordes

Next Meeting: April 12th, 2022
(Online Video Meeting)
Cloud-init
Kevin McGregor will
provide an overview of
cloud-init, a widely-
supported way to initialize
instances of cloud-aware
distros (i.e. pretty much all of them!) on your public,
private or home cloud.

The latest meeting details are always at:
https://muug.ca/meetings/

Where to Find the Meeting:
This month we will continue to use
the open source meeting software:
Big Blue Button. If you haven’t tried
it yet, we recommend joining the
meeting a little early to familiarize
yourself with the controls.

The virtual meeting room will be open by 7:00 pm on
April 12th, 2022 with the actual meeting starting at
7:30 pm. You do not need to install any special app
or software to use Big Blue Button: you can use it via
any modern web-cam-enabled browser by going to
the website link above.

Please note that the meeting link will not be active
until approx. 30 minutes before the actually meeting
date and time.

Backups Versus EMPs
With the hugely decreasing cost of flash media (e.g.
USB sticks) and external shingled hard drive storage,

this author has been recalculating the costs of doing
backups to various media.

It turns out optical media, mostly DVD-Rs or BD-Rs
are still much cheaper per gigabyte; although still
the least convenient due to their limited size.
Strangely enough, it is starting to get slightly
difficult to source 50- and 100-disc spindles of optical
media, with some outlets not stocking any at all, and
others with vastly reduced selection.

What do EMPs have to do with this? For various
reasons, justified or not, EMP chatter has been
increasing as of late. We all know optical media can
survive an EMP, but can flash media? There seems
to be a lot of confusion and disagreement. Flash
backup, being somewhat cheap, and extremely
convenient, would be slightly more attractive if it
was known it could survive an EMP and/or strong
electrical storms.

After much research the question remains
unanswered. But one interesting idea is to put flash
backup sticks into a small Faraday cage. In theory, a
strong/thick enough Faraday cage should shield the
contents from an EMP. Thus arises the next
question: how would you obtain or build such a
cage? Internet merchants have already been
working on it.

If your answer to backup is “cloud”: beware that the
cloud storage vendors are also likely extremely
vulnerable to EMPs, especially multiple, geograph-
ically distributed EMPs. Read the terms of storage:
few guarantee against loss of data.

https://briantomasik.com/backing-data-
geomagnetic-storms-emps/

1

https://muug.ca/meetings/
https://briantomasik.com/backing-data-geomagnetic-storms-emps/
https://briantomasik.com/backing-data-geomagnetic-storms-emps/

ioctl() Insanity
Zack’s Kernel News recently had some choice
nuggets regarding ioctl():

Input/output controls (ioctls) are a night-
marish fantasy of one of the outer gods,
possibly Nyarlathotep. Ioctls exist in the
nether region between what you need the
hardware to do, and what the system calls are
able to provide. [...]

Instead, the single ioctl() system call can take
all of that malignant energy unto itself,
growing darkly beneath the surface for all
time. If you asked a kernel developer about
documenting all the behaviors of ioctl(), they
would begin to laugh, cry, and explode simul-
taneously. Try it and see. Or don’t. They
have suffered enough.

https://www.linux-magazine.com/Issues/
2021/248/Kernel-News

Did You Know? … Rounding
We all learned about rounding decimal numbers in
school. It seemed very straightforward. Did you
know that there also exist some strange rules for
rounding, and that many computer programs,
libraries, languages, and standards differ in their
behaviour in pretty common scenarios? If you’re
expecting a certain result or consistency, you might
want to verify your tool is doing what you want.

The big problem is in some cases you’ll get “Banker’s
rounding”, or “round to nearest – ties to even”
instead of the more typical and expected “round to
nearest – ties away from zero”. The latter states that
you round 8.5 to 9; the former rounds 8.5 to 8. The
difference between the two only applies when you
have a perfect half value / tie, so rounding 8.51 will
result in 9 with both methods. Still, to many of us,
rounding 8.5 to 8 (ties-to-even) may seem strange.

Let’s survey the real world:

PHP: echo round(8.5)
9

Perl: use v5.10; use Math::Round;
say round(8.5);
9

C: #include <stdio.h>
#include <math.h>
int main(){ printf(
“%f\n”,roundf(8.5)); }
9.000000
*NOTE1

JS: console.log(Math.round(8.5))
9

Mysql: select round(8.5);
9

Python3: print(round(8.5))
8

.NET (from docs, untested):
decimal.Round(8.5)
8

Any language/program using stdio’s
printf:
printf(“%1.0f\n”,8.5)
8

*NOTE1: gcc doesn’t provide a itoa function so only
printf type functions can turn ints into strings; yet
this causes problems for us because printf itself
applies rounding rules. However, here we can be
sure we are not seeing any printf rounding, and
roundf()’s documentation declares it uses ties-away-
from-zero anyhow. See below.

As we can see, languages and libraries cannot agree
on this simple question. The majority use ties-away-
from-zero, which is what you’d probably expect. But
python3, and, very importantly, printf, use ties-to-
even.

2

https://www.linux-magazine.com/Issues/2021/248/Kernel-News
https://www.linux-magazine.com/Issues/2021/248/Kernel-News

Since almost every language provides a printf
function which just ties into the system stdio library,
most languages will have different rounding
behaviour between their internal rounding function
and printf’s rounding – within the same language!

The whole problem seems to stem from the IEEE 754
(1985) standard which governs floating-point arith-
metic used by many (most?) FPUs and many
libraries. This apparently includes stdio; or perhaps
stdio just defers to what the FPU does. (Homework
exercise: use the stdio source, Luke.)

IEEE 754 states “ties to even – rounds to the nearest
value; if the number falls midway, it is rounded to
the nearest value with an even least significant digit;
this is the default for binary floating point and the
recommended default for decimal.” (wikipedia,
emphasis ours)

It also states: “ties away from zero […] intended as
an option for decimal floating point.”

It seems clear printf() is following IEEE 754’s default.
The manpage talks about rounding but not which
method it uses or what standard, though perhaps
another stdio manpage states in some manner that it
mainly follows IEEE 754. In any event, printf() does
not appear to provide any method for selecting the
other rounding algorithm(s) the standard offers.

So what is this Banker’s (ties-to-even) rounding and
why does it even exist? It seems to have been
championed by, well, bankers (or the Dutch or
Gauss, whom both also lend their names to the
method: no one really knows), because they thought
that rounding the tie up (let’s assume only positive
numbers for this argument) was biased and that
banker’s rounding would give a more precise result.
But does it?

https://www.sqlservercentral.com/articles/
bankers-rounding-what-is-it-good-for

That article states that it gets closer to the actual
unrounded sum, but disturbs the normal, even distri-
bution of target digits. But what if the unrounded
sum is not the correct goal?

Think of the case of a tax, like the PST. When you
buy a product, you are charged PST in cents, never
fractions of a cent. But since the tax rate is 7%, the
tax on an item will, the vast majority of the time,
have fractions of a cent. Any rounding that goes up
will favour the government: they will get more tax
than they should: think ceil(). Any rounding that
goes down will favour the taxpayer: they will pay
less tax than they should: think floor(). So perhaps
the correct goal of rounding should be to see what
algorithm best “meets in the middle”, or is closest to
the government (and/or taxpayer) winning precisely
half the time.

Your author wrote a simulation program to
determine which algorithm best approaches both
goals. The common rounding method is vastly
superior to “meet in the middle”, whilst ties-to-even
gets closer to the unrounded sum. So perhaps both
are correct depending on your actual goal.

One moral of this story is read the documentation
and run some simple tests with your tool to ensure it
is doing what you desire. Many will state what they
are doing with precise ties. Some provide an
optional argument or different function to specify
the algorithm. Another moral of the story is to do
an audit of your code to see if you are using sprintf()
anywhere to effect rounding. This author discovered
he was using it in many places where it could be
considered a bug in his personal perl programs.

At the end of the day, so many tools seem to agree
on what the “right thing” is, so why did IEEE 754,
and thus ubiquitous things like printf() decide to use
Banker’s rounding? IEEE 754 hints at a possible
reason when it says “for binary floating point”.
Maybe there is some advantage or logic for it when
dealing exclusively with binary numbers, as
computers obviously do. Maybe it requires less CPU
cycles. Maybe it is more straightforward. (Once
again, homework exercise.)

As for taxes like the GST and PST, their regulations
clearly state they use the normal ties-away-from-
zero. Software programs like Quickbooks and MS
Money appear to do so as well. That can allow many
to emit a big sigh of relief.

3

https://www.sqlservercentral.com/articles/bankers-rounding-what-is-it-good-for
https://www.sqlservercentral.com/articles/bankers-rounding-what-is-it-good-for

Ironically enough, it was an amount on a MUUG
invoice that resulted in precisely a half-cent in PST
that triggered your MUUG Treasurer to initiate a trip
down this particular rabbit hole with this author.
The final word: this is one heck of a complicated
question. Feel free to add to the discussion at or on
the MUUG Round Table! (Paging M.Doob…)

https://en.wikipedia.org/wiki/Rounding

emacs Versus vi
Put your flameproof anorak on! This author is going
to definitively answer the age old question: which is
better, emacs or vi?

Actually, that’s a lie. But here are some statistics to
show that vi (in its modern, active vim form) is a
couple of orders of magnitude more buggy and full
of security holes than emacs. The number of CVEs
issued for vim in 2021 and 2022 have been shocking,
and not a week seems to go by without the Fedora
Updates mailing list not having a new vim update
with a CVE attached. Emacs hasn’t seen a CVE since
2017. Even worse, about one third of vim’s holes are
of the “execute code” variety (very bad).

A big thanks to Les.net for providing MUUG with
free hosting and all that bandwidth! Les.net (1996)
Inc. is a local provider of VoIP, Internet and Data
Centre services. Contact sales@les.net by email,
or +1 (204) 944-0009 by phone.

Thank You Michael W. Lucas
MUUG would like
to thank Michael
W. Lucas for
donating one of his
ebooks every
month as a door prize. You can view and purchase
his tech books here:

https://www.tiltedwindmillpress.com/product-category/tech/

Creative Commons License
Except where otherwise noted, all textual content
is licensed under a Creative Commons Attri-

bution-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-sa/4.0/

4

Figure 1: emacs

Figure 2: vim

Help us promote this month’s
meeting, by putting this poster up
on your workplace bulletin board or
other suitable public message board:

https://muug.ca/meetings/MUUGmeeting.pdf

https://muug.ca/meetings/MUUGmeeting.pdf
https://creativecommons.org/licenses/by-sa/4.0/
https://www.tiltedwindmillpress.com/product-category/tech/
mailto:sales@les.net
https://en.wikipedia.org/wiki/Rounding
https://www.tiltedwindmillpress.com/product-category/tech/

	Help us promote this month’s meeting, by putting this poster up on your workplace bulletin board or other suitable public message board:
	https://muug.ca/meetings/MUUGmeeting.pdf
	Cloud-init
	The latest meeting details are always at:

	https://muug.ca/meetings/
	https://briantomasik.com/backing-data-geomagnetic-storms-emps/
	https://www.linux-magazine.com/Issues/2021/248/Kernel-News
	https://www.sqlservercentral.com/articles/bankers-rounding-what-is-it-good-for
	https://en.wikipedia.org/wiki/Rounding
	https://www.tiltedwindmillpress.com/product-category/tech/
	https://creativecommons.org/licenses/by-sa/4.0/

