
October 1990 $2.50
Volume 3, Number 1

Technical UNIXVser Group

newsletter of the

Technical UNIX®
User Group

This month...

The President's Corner
Fortune File
A Menagerie for Programmers
Employment Opportunity
Agenda for October 9th Meeting

ff : \
Late Breaking News...

Next Meeting to be held at UNISYS
Time to RENEW Your Membership

UNIX is a registered trademark of AT&T.

Thoughts From The Editor
By Susan Zuk

This is the last newsletter for the 1989-90 TUUG year. I
was quite excited when I received articles for the newslet­
ter. I had an overflow of information. Thank you to those
members sending information and keep it coming. Most
of the submissions should be included next month.

It has been discussed that we circulate a full newsletter
every other month with a meeting notice in between. If
you have any opinions please let us know.

The elections for the upcoming year are scheduled for the
October meeting. Please think about becoming involved
with the executive or offering any type of helping hand.

October is also the month for renewing memberships.
Please present your membership fee ($20.00) at the next
meeting or send it to: Technical UNIX User Group, P.O.

Box 130, Saint-Boniface, Manitoba, R2H 3B4. We will
send a receipt back to you.

This month's newsletter features an article on the multi­
tude of programming features available on UNIX. Take a
look to see if you can pick up any tips. Gilbert submitted
his final President's column as he is stepping down this
month. Thank you Gilbert for all your submissions.
Gilbert will continue helping the group in the position of
Past President. Take note of the employment opportunity
as listed on page 7. It is really nice to see UNIX positions
being listed in our city. It has taken some time but the
number of UNIX installations is growing!

Hope to see you at the October meeting and I'm ready to
receive more articles. Remember to think about becom­
ing not only a member but an ACTIVE member.

Group Information

The Technical Unix User Group meets at 7:30 pm the second
Tuesday of every month, except July and August. The news­
letter is mailed to all paid up members 1 week prior to the
meeting. Membership dues are $20 annually and are due at the
October meeting. Membership dues are accepted by mail and
dues for new members will be pro-rated accordingly.

The Executive

President:
Vice President:
Treasurer:
Secretary:
Newsletter Editor:
Membership Sec:
Information:

261-9146
943-5401
261-9146

Gilbert Detillieux
Derek Hay
Gilles Detillieux
Vacant
Susan Zuk (W) 788-7312
Gilles Detillieux (W) 788-6209
Gilbert Detillieux 261 -9146

(or) Susan Zuk (W) 788-7312

Technical UNIX User Group
P.O. Box 130

Saint-Boniface, Manitoba
R2H 3B4

Copyright Policy and Disclaimer

This newsletter is ©opyrighted by the Technical UNIX User
Group. Articles may be reprinted without permission as long
as the original author and the Technical UNIX User Group are
given credit.

The Technical UNIX User Group, the editor, and contributors
of this newsletter do not assume any liability for any damages
that may occur as a result of information published in this
newsletter.

t = \

ANNOUNCEMENT...
Meeting Location:

The October meeting location will be provided by
UNISYS Canada Inc., Suite 1000-1661 Portage Ave
(UNISYS Building). Upon entering the building you
will then be required to sign-in. Please sign-in using
"TUUG" as the agency represented.

\ , J

President's Corner
President's Parting Shots

by Gilbert Detilliewc, President

A while ago, I read in some Unix-related publication
a criticism of the Open Software Foundation that
went something like this: 'The only thing open
about them is their mouths." This statement does
sound rather extreme, and is an emotional rather than
intellectual response, but it is typical of the mud-
slinging and rhetoric that has been exchanged be­
tween the OSF and the rival Unix International.
Seeing this display, I can't help but draw compari­
sons to politics, and wonder: While these people are
looking after their own interests, who is looking after
the interests of the little people — the users?

The GUI battle is a case in point. The OSF has just
released Motif 1.1, which is based on X11 Release 4
(the original Motif was based on X11R3). The
problem is that the new Motif is not binary compat­
ible with the previous version, requiring "a simple
recompile" of all Motif client applications. While
this slight incompatibility is not likely to pose a
problem for any Motif software developers, it could
be a problem for the users.

Why is the new version of Motif incompatible? It
turns out that Motif was implemented using a modi­
fied version of MIT's Xt library (the X Toolkit In-
trinsics) from X11R3. To move up to X11R4, the
OSF had to incorporate similar modifications to
MIT's significantly altered Xt library. The OSF has
now made these modifications available to MIT for
inclusion in the eventual X11R5, so that should be
the end of that problem. This seems like a strange
way to be developing an "open" standard — by
requiring modifications to other previously defined
•standards.

Sun's Open Look, which is based on XI1R4 doesn't
suffer this problem, since it uses its own libraries that
interface to the standard XI1 library. However, Sun
shouldn't gloat too much about the Motif incompati­
bility problem — the implementation of the Open
Look 2.0 libraries was different enough from the

previous version that relinking to the new libraries
was required.

What all this says to me is that these are still emerg­
ing technologies, without all the bugs ironed out.
Furthermore, users haven't had a say in any of this
yet. Standards are being imposed prematurely by
companies looking after their own best interest,
without much consideration for the rest of us. Al­
though I am a big proponent of standards for devel­
oped technology, I feel that these organizations are
imposing standards without foresight, and this is
likely to stifle progress in these new areas.

Is it any wonder the boys from Bell Labs have
decided to throw out Unix and its whole standards-
laden baggage and gone back to the drawing board?
Their new project, called "Plan 9," is a highly distrib­
uted Unix-like operating system, which they proudly
claim does not adhere to any of the present standards.
This move is not so surprising when you consider
that Unix was originally created by this anarchist
group as an escape from the shackles of mainframe-
based system standards of the time.

As I now step down as president of the group, I leave
you to ponder the future of Unix, and the future of
our group. Perhaps the answer to both requires a
spirit of cooperation and involvement from all users?

I would like to thank all of you who supported and
assisted me during the past two years as president.
This has been avery rewarding and interesting expe­
rience. I wish the new president, whoever that may
be, all the best for the upcoming year. I encourage
you all to come out to the next meeting to vote and/
or acclaim the new executive, and encourage you all
to consider what your role will be in the group's
future. We will be meeting at Unisys (10th
floor,1661 Portage) at 7:30PM, October 9. Hope to
see you there.

The Fortune File
This month's fortune, submitted by Gilbert Detillieux, was produced by the DOS MURPHY program.

All general statements are false.

3

A Menagerie for Programmers
By Dave Taylor

Reprinted with permission from the October issue ofCommUNIXations,
published by Uniforun

UNIX systems offer many useful utilities. Here's a
collection of fauna native to the world of program­
ming.

A veritable animal kingdom of utilities exists for the
UNIX platform. On almost any given machine are
hundreds of different commands that you can invoke
at any time. What's more, almost all of them have a
variety of different command options -flags -- that
can completely change their behaviour. For ex­
ample, using the right flags with the who command
on System V, you can have it tell you what "zombie"
processes (processes not attached to a terminal) are
running on the machine. A tour of standard utilities
in the programmer's environment and a sampling of
commercial products that supplement the basic tools
may suggest some useful ways irf interacting with
any UNIX system.

tomed to the more focused environment of a proprie­
tary system may find them lacking. For example,
Symantec's Lightspeed Pascal on the Macintosh has
a multifont, Pascal-knowledgeable editor that puts
all keywords in boldface as you type them in, to
ensure a consistent format for what you're typing.
This is especially helpful when you go back to the
code and try to remember how the program should
work.

For printing source code, however, various pro­
grams can help produce more readable formatting.
Most notable is vgrind from Berkeley UNIX, which
translates C source code into a troff document that
can then be printed on a high-quality printer such as
a Versatec. Tgrind offers similar functionality, with
output in Tex format. Other utilities translate C
source into well-organized PostScript.

EDITING
COMPILING

Many programmers spend the most time in the
editor, adding new code, reformulating existing
code, puzzling out incorrect behaviours or adding
ĉomments to enhance the readability of the software.

Given this necessity, it is surprising that so little has
been done to create sophisticated editing environ­
ments that are knowledgeable of programming lan­
guages.

Standard UNIX utilities typically are designed to
function reliably on virtually any terminal. As a
result, UNIX has minimal facilities to aid in the
intelligent display and editing of programs, which
are difficult to achieve across scores of available
terminals. There are various add-ons and options
within both vi and EMACS, but programmers accus-

Once your code appears correct, the next step is to
compile it. However, one of the greatest problems
with the C programming language is that most
compilers are designed simply to translate the source
into relocatable object code (which the loader Id
then uses as input to create an actual executable file).
If you have a program that invokes a routine as
"testme(1)" and later defines the routine to have five
parameters, the compiler will accept that without in­
cident and generate object code. Of course, when
you actually execute the program it's likely that
things will fail.

What's missing in the traditional UNIX C compiler
is a sophisticated syntax and semantics checker.
(Indeed, one can argue that the very design of C
prohibits a sophisticated check of code.) However,

4

it is true that a number of useful utilities can go a long
way to the quest to create correct programs.

The most important of those is surely the lint pro­
gram, an application that accepts a single- or mul­
tiple-file C program and tries to verify correct usage,
as well as adding the basic semantic checking that the
compiler skips. Lint would flag an error in the case
cited above, in which a routine is invoked with the
wrong number of arguments. However, lint also
teaches programmers about the importance of return
types in library calls and the value of the "(void)"
cast, which in practice many people ignore. To any
program it is given, lint is likely to respond with
dozens of complaints about incorrect return types,
because the programmer has ignored the return code
of a library routine. Indeed, all the examples in The
C Programming Language by Brian Kernighan and
Dennis Ritchie (Prentice-Hall, 1978) generate errors
in lint unless modified.

Catching usage errors isn't always enough. Many
varieties of lint offer the ability to check for code
portability as well. In fact, there are third-party
packages, most notably the ANSI Code Verifier, that
examine code with an eye toward a specific coding
standard or hardware type. On a machine that offers
sufficiently good performance, it might be wise to
require that programmers remove major problems in
their code before compilation takes place. Packages
that test a C compiler for ANSI X3J11 compliance,
such as the Ace C Validation Suite, are very different

•from those that check user-generated code against
the same standard and are useful only for companies
developing compilers or confirming that a particular
vendor indeed complies with the ANSI draft stan­
dard.

Another aspect of compilation that is essential on all
UNIX computers is the make facility. Almost all
programming projects end up consisting of more
than a single source file, so when files are modified,
only the minimum number of recompilations should
occur to create a new executable. Make figures out
that minimum recompilation automatically through
the rules defined in the project-specific makefile.

Make should be a part of all UNIX systems. If it isn't
on yours, you can obtain it from your vendor.

One of the most difficult parts of dealing with the
make utility is creating makefiles. There are a couple
of different approaches to this in the UNIX commu­
nity, including new versions of make that require
dramatically smaller makefiles, like imake and
pmake, and packages that create makefiles from a set
of source files, like mkmfmd depends. Either way,
the time spent setting up a project to use the make
facility will be richly repaid later.

DEBUGGING

Perhaps the greatest bane of programmers, UNIX
and otherwise, is the lack of truly useful and intelli­
gent debugging packages. Ideally, of course, one
would like a program that executes your own pro­
gram, then outputs something like "logic flow in
routine Kmake_connection()' is wrong; check worst
case size=l." We don't have that level of debugging
yet but some utilities within the UNIX environment
can aid in the creation and validation of correct,
error-free applications.

Most notable among them is, of course, the lint
program already mentioned. One of the classic
problems with UNIX programming is errors of
mismatched parameter types or number of parame­
ters in library calls. These can quickly corrupt
memory (since variables aren't forced or constrained
to their own subspace) and cause many confusing
and difficult problems.

At run time, however, most UNIX implementations
have a "source-level" debugging system available,
too, either dbx, cdb or xdb, depending on which
system you're on. These allow programmers to set
breakpoints in the C source code and examine the
state of memory (and files) at any point in the
program. Programmers can even alter the value of
different variables without leaving the program. On

the downside, since you're working in a different
run-time environment, it's quite possible that errors
will not occur then but will later when run without
the safety net of the debugger. Further, all of these
source-level debuggers fail to trace forked child
processes (that is, if your program invokes another
program, or uses fork or vfork to spawn processes,
you have to wait until they're done to regain control
of your program).

Powerful CASE tools are the answer at this point,
and one of the best is Saber-C. It offers greatly
enhanced run-time error checking (including out-of-
bounds array indexing) by executing the code from
a C interpreter rather than the actual compiler object
code. Also in this line is the Safe C Interpreter.

Another utility worth learning the basics of is the
assembly-level debugger adb. It lacks the features of
the slicker symbolic debuggers but offers program­
mers the ability to examine a core dump and figure
out what routine caused the failure (including a stack
trace of which routine called that routine, all the way
back to the main program). Its cryptic interface
makes it difficult to use but worthwhile to know
when you encounter sporadic failures in a package.

RUN-TIME PROFILING

Intimately coupled with being able to debug a run­
ning program is the ability to understand what's

* being invoked and how often routines are called. Not
only does this aid in understanding the software, it is
also invaluable for performance tuning. Instead of
rewriting all the routines to speed them up, it's much
more sensible to find those simple little routines that
are invoked thousands of times and spend the effort
maximizing their performance.

For most UNIX machines, this capability is accessed
by compiling the code with the -p compiler option
(for run-time profiling). Invoking the code that's
been compiled for profiling will create a status log
file (typically called "mon.out" or something simi­

lar), which you can then examine with the prof
command. Output of this two-step profile can in­
clude subroutines sorted by number of calls or gra­
phical output through use of the plot command.
There is also a gpro/command for different graphi­
cal profiling, as well as the pxp Pascal execution
profiler, which seems to be found exclusively on
Berkeley UNIX systems. Some stand-alone pack­
ages also offer this power, including Saber-C, the C
Dynamic Analyzer and the Safe C Dynamic Profiler.

SOURCE CODE CONTROL

UNIX has always offered top-notch tools in revision
or source code control systems. The idea behind
these packages is quite straightforward; as software
is modified, it's important to keep an audit trail of
changes that have been made. This allows projects to
back up to a specific date, for example, in order to du­
plicate exactly the code with which a customer is
having problems, as well as to understand how
software evolves throughout the lifetime of a large
project.

The premier tools for source code control are the
Source Code Control System (SCCS), found on
almost all UNIX systems, and RCS, developed by
Walter Tichy at Purdue University. Both offer
similar functionality, with utilities to "check in" and
"check out" files from the file store, to annotate
changes to indicate what was done and why, and to
extract specific versions by number or date. Any
programming project that employs more than one
programmer should utilize either one of these two or
a commercial package that offers similar functional­
ity. These tools can also be useful for tracking modi­
fications to normal text documentation such as tech­
nical or procedures manuals and other non-program
files.

Commercial packages offer a great deal more func­
tionality than either SCCS or RCS. Among them are
Ace CADese, Aide-De-Camp Software Manage­
ment System, GNJ Configuration Management

6

System, Cradle, Software Backplane and TeamNet
Data and Configuration Management System.

SOURCE CODE TRANSLATION

A bit less common but extremely useful when
needed are applications that take as input a program
written in one programming language and output it
in a different language. These are commonly re­
ferred to as source code translators, to distinguish
them from compilers that translate source into object
code for linkage and execution.

Most of the language translators offer translation
into the C programming language from various shell
languages and different programming languages,
including Pascal, Basic antf"Fortran. Among the
public packages available in this corner are p2c, a
Pascal-to-C translator, andptoc, an earlier attempt at
that. Because these are large, complex packages, it's
not surprising that there are many more commercial
packages to aid in source translation, including
translators for Basic to C, Fortran to C, Pascal to C,
Fortran 77 to C++, Cobol to C and the C shell to C

OTHER USEFUL UTILITIES

Various directions are worth investigating to im­
prove your existing development environment. One
"of the best things a UNIX software developer can do
is learn the ins and outs of the many different
applications and tools on the UNIX system, and how
they interact. Don't hesitate to write small packages
for specific functionality that isn't otherwise offered
- for example, almost every project that uses SCCS
has its own custom shell scripts to aid in finding files
— or to customize the interface for your needs.

Specific UNIX tools worth learning more about
include awk, an interpreted language with string-
oriented features and terrific power, sed, a stream-
oriented editor for performing quick and easy trans­

lations on files along a pipe; lex and yacc, to aid in
quick, error-free generation of compiler front ends
(though they can be used for more than that); and
grep and the grep family of file-searching utilities.
Even though this richness of choice is characteristic
of the UNIX environment, three basic packages
remain essential: make, lint and SCCS or another
source code control system. The few hours required
to learn how to use them will more than pay for
themselves with improved productivity and reliabil­
ity of code - and produce happier programmers, too.

DAVE TAYLOR is president of Intuitive Systems, a
consultingfirm inLosAltosrCA, which specializes in
internationalization, user interface design and soft­
ware marketing. He is a contributing editor of
CommUNIXations.

r - \̂

Employment Opportunity

Senior Programmer

XCAN GRAIN LTD. requires a senior programmer with
3-5 years experience in a UNIX environment on mid-
range computers. The technology currently installed
includes UNIX V5.3 operating system, ACCELL/
UNIFY fourth generation language/database, and C
language programming. We are moving towards a
TCP/IP ETHERNET network to include personal
computers and remote sites. Preference will be given
to applicants having skills in these areas. A working
knowledge of personal computers would be an addi­
tional asset.

XCAN offers a comprehensive employee benefit pack­
age and a competitive salary commensurate with ex­
perience and training. XCAN GRAIN LTD. is Canada's
largest privately owned grain exporter with head off ices
in Winnipeg as well as offices in Vancouver, London
and Tokyo.

Please send your resume to:
Personnel Manager
XCAN GRAIN LTD.

1200-201 Portage Avenue
Winnipeg, Manitoba

\)
7

AGENDA
Technical IMXTUscr Croup ,

for
Tuesday, October 9th, 1990

7:30pm
UNISYS Building

10th Floor-1661 Portage Avenue

1. Round Table 7

2. Business Meeting 8
a) Elections & Final Executive Reports

President
Vice President
Treasurer
Membership Secretary
Secretary
Newsletter Editor
Meeting Co-ordinator

3. Break 8

4. Presented Topic 8

5. Adjourn

8

